资源描述
七年级数学上册1.1生活中的图形期末试卷【A4可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、已知下图为一几何体的从三个不同方向看的形状图,若从正面看的长方形的长为 ,从上面看的等边三角形的边长为 ,则这个几何体的侧面积是( )
A . B . C . D .
2、下列说法中正确的是( )
A .四棱锥有4个面
B .连接两点间的线段叫做两点间的距离
C .如果线段 ,则M是线段AB的中点
D .射线 和射线 不是同一条射线
3、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
4、围成下列立体图形的各个面中,每个面都是平的是( )
A . 长方体 B . 圆柱体
C . 球体 D . 圆锥体
5、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )
A . B . C . D .
6、下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的( )
A . B . C . D .
7、把如图的三角形绕它的最长边旋转一周,得到的几何体为图中的( )
A . B . C . D .
8、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )
A .12 B .14 C .16 D .18
9、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
10、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )
A . B . C . D .
11、下列几何体中,不完全是由平面围成的是( )
A . B . C . D .
12、下列命题中,假命题是( )
A .直角三角形斜边上的中线等于斜边的一半
B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合
C .若 ,则点B是线段AC的中点
D .三角形三条边的垂直平分线的交点叫做这个三角形的外心
13、如图,有一个棱长是 的正方体,从它的一个顶点处挖去一个棱长是 的正方体后,剩下物体的表面积和原来的表面积相比较( )
A .变大了 B .变小了 C .没变 D .无法确定变化
14、下列几何体中与其余三个不属于同一类几何体的是( )
A . B . C . D .
15、如图,已知长方体ABCD﹣EFGH,在下列棱中,与棱GC异面的( )
A .棱EA B .棱GH C .棱AB D .棱GF
16、下列图形是棱锥的是( )
A . B . C . D .
17、某学校设计了如图的一个雕塑,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方块的棱长均为1 m,则需喷刷油漆的总面积为( )m2
A .9 B .19 C .34 D .29
二、填空题(每小题2分,共计40分)
1、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
2、在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是 .(结果保留π)
3、如图,一个正方体形状的木块,棱长为2米,若沿正方体的三个方向分别锯成3份、4份和5份,得到若干个大大小小的长方体木块,则所有这些长方体木块的表面积和是 平方米.
4、如图,一个长方体长 ,宽 ,高 .从这个长方体的一个角上挖掉一个棱长 的正方体,剩下部分的体积是 ,剩下部分的表面积是 .
5、五棱柱是由 个面围成的,圆锥是由个面围成的 .
6、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .
7、下列几何体中,含有曲面的有 个.
8、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 .
9、两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是 cm3 , 最大表面积是 cm2 .
10、如图,在棱长分别为 、 、 的长方体中截掉一个棱长为 的正方体,则剩余几何体的表面积为 .
11、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2.
12、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
13、当笔尖在纸上移动时,形成 ,这说明: ;表针旋转时,形成了一个 ,这说明: ;长方形纸片绕它的一边旋转,形成的几何图形就是 ,这说明: .
14、将下列几何体分类,柱体有: (填序号).
15、已知棱柱共有12个面,则该棱柱共有 个顶点,共有 条棱.
16、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为 .
17、一个直角三角形绕它的一条直角边旋转一周得到的几何体是 .
18、一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.( )
19、一个正方体的棱长2×102毫米,则它的表面积是 .体积是 .
20、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体.从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是 。
三、计算题(每小题2分,共计6分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
四、解答题(每小题4分,共计20分)
1、一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体,问:其中三面都涂色的有多少个?两面都涂色的有多少个?只有一面涂色的多少个?各面都没有涂色的有多少个?
2、将棱长是1cm的小正方体组成如图所示的几何体,求这个几何体的表面积.
3、如果一个棱柱一共有12顶点,底边长是侧棱长的一半,并且所有的棱长的和是120cm,求每条侧棱的长.
4、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2 , 那么这根木料本来的体积是多少?
5、如图,将下列图形与对应的图形名称用线连接起来:
展开阅读全文