1、七年级数学上册1.1生活中的图形平时训练试卷word可编辑(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计34分)1、下列几何体中,是棱锥的为( )A . B . C . D .2、下列图形中,不可以作为一个正方体的展开图的是( )A . B . C . D .3、下列图形属于立体图形的是( )A .正方形 B .三角形 C .球 D .梯形4、下列几何体中,不完全是由平面围成的是( )A . B . C . D .5、“汽车上雨刷器的运动过程”能说明的数学知识是( )A .点动成线 B .线动成面 C .面动成体 D .面与面交于线6、如图,下面
2、的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )A . B . C . D .7、一个物体的外形是长方体(如图(1),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )A .圆柱 B .球 C .圆锥 D .圆柱或球8、从下列物体抽象出来的几何图形可以看成圆柱的是( )A . B . C . D .9、下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的( )A . B . C . D .10、按面划分,与圆锥为同一类几何体的是( )A .正方体 B .长方体 C .球 D .棱柱11、下列图形中不是立体图形的
3、是( )A .圆锥 B .圆柱 C .长方形 D .棱柱12、下列图形绕虚线旋转一周,便能形成圆锥体的是()A . B . C . D .13、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线 B .线动成面 C .面动成体 D .以上都不对14、如图,一个正方块的六个面分别标有A,B,C,D,E,F,从三个不同方向看到的情况,如图所示,则A的对面应该是字母( )A .B B .C C .E D .F15、如图,含有曲面的几何体编号是( )A . B . C . D .16、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有
4、6条棱,则该模型对应的立体图形可能是( )A .四棱柱 B .三棱柱 C .四棱锥 D .三棱锥17、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )A . B . C . D .二、填空题(每小题2分,共计40分)1、已知在RtABC中,C=90,AB=5cm,BC=3cm,把RtABC绕AB旋转一周,所得几何体的表面积是 2、如图,P是直线a外一点,点A,B,C,D为直线a上的点PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是 。3、如图,一个长方体长,宽,高.从这个长方体的一个角上挖掉一个棱长的正方体,剩下部分的体积是 ,剩下部分的表面积是
5、.4、一个正方体的表面积是24,那么这个正方体的所有棱长之和是 .5、一个几何体的面数为12,棱数为30,它的顶点数为 6、如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块7、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是 8、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为 9、如图所示为8个立体图形其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 10、用10个棱长为acm的正方体摆放成如图的形状,像这样向下逐层累加摆放总共10层,其表
6、面积是 .11、已知长方形的长为4cm, 宽3cm, 现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为 cm312、圆锥由 面组成的,圆锥的侧面展开图是 ;13、一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有 种爬行路线14、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为 .15、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .16、如图,在正方体ABCDABCD中,与棱AD平行的棱有 条17、六个长
7、方体包装盒按“规则方式”打包,所谓“规则方式”是指每相邻两个长方体必须以完全一样的面对接,最后得到的形状是一个更大的长方体,已知每一个小包装盒的长宽高分别为 5、4、3 则按“规则方式”打包后的大长方体的表面积最小是 .18、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.19、下面的几何体中,属于柱体的有 ;属于锥体的有 ;属于球体的有 .20、汽车的雨刷把玻璃上的雨水刷干净,用数学知识解释为: .三、计算题(每小题2分,共计6分)1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一
8、个什么几何体?请求出这个几何体的底面积和侧面积2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积四、解答题(每小题4分,共计20分)1、分别用一张边长为5cm的正方形和一张长6cm、宽4cm的长方形硬纸片旋转一周得到两个圆柱哪个圆柱的体积更大?2、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现
9、有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?3、下图是长方体的表面展开图,将它折叠成一个长方体.(1) 哪几个点与点重合?(2) 若,求这个长方体的表面积和体积.4、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体(1) 这个几何体由个小正方体组成(2) 在下面网格中画出左视图和俯视图.(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.5、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图;方案二:以较短的一组对边中点所在直线为轴旋转,如图(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?