资源描述
七年级数学上册1.1生活中的图形平时训练试卷word可编辑
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )
A . B . C . D .
2、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
3、下列立体图形含有曲面的是( )
A . B . C . D .
4、下列几何体中,圆柱体是( )
A . B . C . D .
5、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
6、一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为( )
A . B . C . D .
7、电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
8、下列几何体中,属于柱体的有( )
A .1个 B .2个 C .3个 D .4个
9、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )
A .20 B .22 C .24 D .26
10、下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )
A . B . C . D .
11、如图,已知长方体ABCD﹣EFGH,在下列棱中,与棱GC异面的( )
A .棱EA B .棱GH C .棱AB D .棱GF
12、下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )
A . B . C . D .
13、下列几何体中,面的个数最多的是( )
A . B . C . D .
14、在下图的四个立体图形中,从正面看是四边形的立体图形有( )
A .1个 B .2个 C .3个 D .4个
15、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )
A .37 B .33 C .24 D .21
16、下面几种图形:①三角形,②长方形,③立方体,④圆,⑤圆锥,⑥圆柱.其中属于立体图形的有( )
A .1个 B .2个 C .3个 D .4个
17、将选项中的直角梯形绕直线旋转一周,可以得到如图的立体图形的是( )
A . B . C . D .
二、填空题(每小题2分,共计40分)
1、将一枚硬币立在桌面上,当用力一转时,它形成的是一个 体,说明的数学道理是 .
2、在乒乓球、足球、羽毛球、六角螺母中,形状类似球体的有 .
3、有棱长比为 的两个正方体容器,若小容器能盛水10千克,则大容器能盛水 千克.
4、一个几何体的面数为12,棱数为30,它的顶点数为 .
5、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2.
6、一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是 .
7、在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是 .(结果保留π)
8、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体.从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是 。
9、一个直棱柱共有21条棱,则这个直棱柱共有 个面.
10、如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 条.
11、如图,一个长方体的表面展开图中四边形ABCD是正方形 正方形的四个角都是直角、四条边都相等 ,则根据图中数据可得原长方体的体积是 .
12、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .
13、将下列几何体分类 用序号填空 :
(1) 按有无曲面分类:有曲面的是 ,没有曲面的是 ;
(2) 按柱体、锥体、球体分类:柱体的是 ,锥体的是 ,球体的是 .
14、一个圆绕它的直径旋转一周形成的几何体是 .
15、从棱长为2cm的正方体毛坯的一角,挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是 cm2。
16、如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是 .
17、如图,在正方体ABCD﹣A′B′C′D′中,与棱AD平行的棱有 条.
18、一个正方体有 个面.
19、如图,长方形 的长 为 ,宽 为 ,将长方形绕 边所在直线旋转后形成的立体图形的体积是 .
20、如图中的几何体有 个面,面面相交成 线.
三、计算题(每小题2分,共计6分)
1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
四、解答题(每小题4分,共计20分)
1、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:
方案一:以较长的一组对边中点所在直线为轴旋转,如图①;
方案二:以较短的一组对边中点所在直线为轴旋转,如图②.
(1)请通过计算说明哪种方法构造的圆柱体积大;
(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;
(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?
2、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?
3、将下列几何体与它的名称连接起来.
4、如图,把一个木制正方体的表面涂上颜色,然后将正方体的棱分成相等的四份,并做上标记,得到许多小正方体.问
(1)有 个小正方体;
(2)有 个小正方体只有两面涂有颜色
(3)有 个小正方体只有3面都涂了颜色.
(4)有 个小正方体6面都未涂色.
5、已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.
展开阅读全文