收藏 分销(赏)

二次函数(3)--由动点生成面积问题.doc

上传人:可**** 文档编号:4354757 上传时间:2024-09-12 格式:DOC 页数:5 大小:220.07KB 下载积分:8 金币
下载 相关 举报
二次函数(3)--由动点生成面积问题.doc_第1页
第1页 / 共5页
二次函数(3)--由动点生成面积问题.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
抛物线与直线型(3) ——由动点生成面积问题 知识点归纳 面积是平面几何中一个重要的概念,关联这平面图形中的重要元素与角。由动点而生成的面积问题,是抛物线与直线形结合的常见形式。解这类问题常用到以下与面积相关的知识: (1) 图形的割补; (2) 等积变形; (3) 等比变化。 经典例题 【例1】 如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由. (昆明市中考题) 思路点拨 对于(3),抛物线的对称轴是直线,当点C位于的对称轴与线段的交点时,的周长为最小,为此需求出直线AB的解析式;对于(4)过点作轴的平行线交解析式;对于(4),过点作轴的平行线交于,则,代入展开整理得关于的二次函数。 【例2】 如图①,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数的图象记为抛物线. (1)平移抛物线,使平移后的抛物线过A,B两点,记为抛物线,如图②,求抛物线的函数表达式; (2)设抛物线的顶点为C,K为轴上一点.若,求点k的坐标; (威海市中考题) 思路点拨 (1)设点坐标为,通过图形的分割计算,建立的方程;(2)点必在平行于的直线上,从等积变形入手。 【例3】 如图,已知点A(m,6)、B(m,1)为两动点,其中0<m<3,连接OA、OB,OA⊥OB。 (1)求证:mn=-6; (2)当时,抛物线经过A,B两点且以轴为对称轴,求抛物线对应的二次函数的关系式; (3) 在(2)的条件下,设直线AB交轴于点F,过点F作直线交抛物线于P,Q两点,问是否存在直线,使 ?若存在,求出直线对应的函数关系式;若不存在,请说明理由。 (潍坊中考题) 【例4】如图,已知抛物线经过点A(2,3),B(6,1),C(0,-2). (1)求此抛物线的解析式,并用配方法把解析式化为顶点式; (2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标; (3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个? (2011年包头市中考题) 分析 由点的个数的探讨联想到“根的判别式”,解题的关键是寻找n、S的关系,并建立关于t的一元二次方程。 同步训练 1.如图,抛物线与双曲线相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且=4.过点A作直线AC∥x轴,交抛物线于另一点C. (1)求双曲线和抛物线的解析式; (2)计算△ABC的面积; (3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由. (2011年日照市中考题) 2. 如图①,已知直线与抛物线交于A、B两点, (1)求A,B两点的坐标; (2)求线段AB的垂直平分线的解析式; (3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由. 第二题 (长沙市中考题) 3. 如图,抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相较于点P、与直线BC相较于M,连接PB。 (1) 求该抛物线的解析式; (2) 抛物线上是否存在一点Q,使与的面积相等?若存在,求点Q的坐标;若不存在,说明理由; (3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使与的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由。 (大连市中考题) 第3题 4. 在平面直角坐标系中,已知抛物线与轴交于点A、B(点A在点B的左侧),与轴交于点C,顶点为E,顶点为E。 (1)若b=2,c=3,求此时抛物线顶点E的坐标; (2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE=S△ABC,求此时直线BC的解析式; (3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足,且顶点E恰好落在直线上,求此时抛物线的解析式. (天津市中考题) 5
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服