1、. . . .整式的乘法知识点1、幂的运算性质:(a0,m、n都是正整数)(1)amanamn 同底数幂相乘,底数不变,指数相加(2) amn 幂的乘方,底数不变,指数相乘(3) 积的乘方等于各因式乘方的积(4) amn 同底数幂相除,底数不变,指数相减例(1)在下列运算中,计算正确的是()(A) (B) (C)(D) (2)=_ _= 2零指数幂的概念:a01(a0)任何一个不等于零的数的零指数幂都等于l 例:= 3负指数幂的概念: a- p (a0,p是正整数)任何一个不等于零的数的负指数幂,等于这个数的正指数幂的倒数例:= =4单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为
2、积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例:(1) (2)5单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加 例:(1) (2)6多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加 例:(1) (2)7乘法公式: 完全平方公式:(ab)2a22abb2 (ab)2a22abb2口诀:首平方、尾平方,乘积的二倍放中央例: (2x+5y)2=( )2
3、+ 2( )( ) + ( )2=_; =( )2 - 2( )( ) + ( )2=_; (-x+y)2 = ( )2 =_; (-m-n)2 = 2 = ( )2_;x2+_ _ +4y2 = (x+2y)2 + ( )2 平方差公式:(ab)(ab)a2b2口诀:两个数和乘以这两个数的差,等于这两个数的平方差注意:相同项的平方减相反项的平方例: (x-4)(x+4) = ( )2 - ( )2 =_; (3a+2b)(3a-2b) = ( )2 - ( )2 =_; (-m+n )( m+n ) = ( )2-( )2 =_; =( )2-( )2=_;(2a+b+3)(2a+b-3)
4、=( )2-( )2=_ _= ;(2ab+3)(2a+b-3)= =( )2-( )2 另一种方法:(2ab+3)(2a+b-3)= = ( m+n )( m-n )( m2+n2 ) =( )( m2+n2 ) = ( )2 -( )2 =_;(x+3y)( ) = 9y2-x2十字相乘:+ ( ) 一次项的系数是与的 ,常数项是与的 例: , = ,= , = 1、若是一个完全平方式,那么m的值是_。2、;(_)3、计算:(1)(3x 2)(2x3y)(2x5y)3y(4x5y)(2) (3) (4) (5) (6)先化简,再求值,其中因式分解知识点一、因式分解的定义:把一个多项式化成几
5、个整式的乘积的形式,这种变形叫做把这个多项式的因式分解 二、因式分解的注意事项: (1)因式分解必须是恒等变形; (2)因式分解必须分解到每个因式都不能分解为止(3)因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式三、因式分解的方法:先提公因式,再 . 直到每个因式都不可再分解为止常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)2十字相乘公式: 如: 分解因式: = , = = , = , = = = = 例1把下列各式分解因式: (1) (2)25(3) (4)例2当时,求代数式的值方
6、法一: 方法二:1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4. 岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献给她的是一些色彩,它奉献给你的也是一些色彩。你必须努力,当有一天蓦然回首时,你的回忆里才会多一些色彩斑斓,少一些苍白无力。只有你自己才能把岁月描画成一幅难以忘怀的人生画卷。参考.资料