1、硕士学位论文三自由度并联机器人轨迹规划及其控制实现T r a j e c t o r yP l a n n i n ga n dC o n t r o lI m p l e m e n t a t i o nf o r3 D o FP a r a l l e lR o b o t学号:2 11 Q 垒!Q 璺大连理工大学D a l i a nU n i v e r s i t yo fT e c h n o l o g y大连理工大学学位论文独创性声明作者郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。尽我所知,除文中已经注明引用内容和致谢的地方外,本论文不包含其他个
2、人或集体已经发表的研究成果,也不包含其他已申请学位或其他用途使用过的成果。与我一同工作的同志对本研究所做的贡献均已在论文中做了明确的说明并表示了谢意。若有不实之处,本人愿意承担相关法律责任。学位论文题目:三目壶邀垂噬。征鍪垒益苎迎盟芏尘垒墨主窒雍望塞弘作者签名:坠壹2 盔日期:垫!垒午丘月旦曰大连理工大学硕士学位论文摘要作为一种先进的生产工具,三自由度并联机器人被广泛应用在电子、食品、医疗等轻工行业中,取代人工完成分拣、拾取、包装等枯燥的重复性工作,可以有效提高产品生产效率及生产质量。而轨迹规划是机器人控制中的一个重要模块,其效果的优劣将直接影响机器人使用过程中的动态性能和工作效率。因此,本课
3、题以提出三自由度并联机器人最优拾取轨迹为目标,以自主设计的机器人为研究对象,对其轨迹规划和控制实现方法进行了探讨。首先,对机器人结构形式进行了分析,借助矢量法建立了机器人运动学逆解模型、速度模型及加速度模型,在此基础上,简化机器人小臂质量模型,利用虚功原理建立了机器人刚体动力学模型,为轨迹规划运动学和动力学约束条件的建立提供了理论基础。其次,建立了基于梯形速度策略的门字型轨迹模型,同时针对其运动曲线不连续的问题,基于电子凸轮原理提出一种椭圆插补轨迹规划方法,并在考虑运动学和动力学约束情况下,建立了时间最优轨迹规划的数学模型。然后,为求解最优时问轨迹规划数学模型,本文应用一种自适应遗传算法,利用
4、M A T L A B 实现了算法的编程和优化求解,得到了门字型轨迹和椭圆轨迹下机器人最优拾取时间,并对两种轨迹的优化结果进行了对比分析,结果表明,本文提出的椭圆插补轨迹相对门字型轨迹能有效提高机器人动态性能及拾取效率。在此基础上,为进一步验证本文提出轨迹规划方法的有效性,根据M A T L A B 优化求解结果,在A D A M S 环境中搭建仿真平台,对椭圆插补轨迹优化结果进行了仿真分析。最后,基于上位机+下位机的控制架构对机器人控制系统进行了硬件设计、轨迹规划模块化设计、软件设计。其中,硬件设计包括:主要硬件配置确定、P L C 模块电路设计、伺服系统电路设计、传感器电路设计等;轨迹规划
5、模块化设计包括:模块引脚设计、插补流程设计、模块封装等;软件设计包括:通信模块设计、上位机交互式界面设计、P L C 底层控制程序设计等。在此基础上,搭建实验平台进行了椭圆插补轨迹试验,结果表明,应用文中提出的轨迹规划方法,机器人驱动关节运动曲线连续、平滑,没有出现较大突变,动态性能较优,能有效满足机器人高速应用条件。算法关键词:三自由度并联机器人;轨迹规划;电子凸轮;椭圆曲线;时间最优;遗传三自由度并联机器人轨迹规划及其控制实现T r a je c t o r yP l a n n i n ga n dC o n t r o lI m p l e m e n t a t i o nf o r
6、3 一D O FP a r a l l e lR o b o tA b s t r a c tA sak i n d o fa d v a n c e dm a n u f a c t u r et o o l,3-D O Fp a r a l l e lr o b o ti sw i d e l ya p p l i e di ne l e c t r o n i c,f o o d,m e d i c a la n do t h e rl i g h ti n d u s t r i e st or e p l a c et h em a n u a lt oc o m p l e t e
7、s o r t i n g,p i c k i n g,p a c k i n ga n do t h e rt e d i o u sr e p e t i t i v ew o r k,w h i c hC a l le f f e c t i v e l yi m p r o v et h ep r o d u c t i o ne f f i c i e n c ya n dp r o d u c tq u a l i t y T r a j e c t o r yp l a n n i n gi sa ni m p o r t a n ti s s u ei nr o b o tc
8、o n t r o l,t h ep r o sa n dc o n so ft r a j e c t o r yp l a n n i n gw i l ld i r e c t l ya f f e c tt h ec o u r s eo ft h er o b o td y n a m i cp e r f o r m a n c ea n de f f i c i e n c y T h e r e f o r e,t h er e s e a r c ho nr o b o tt r a j e c t o r yp l a n n i n gi so fg r e a ts i
9、 g n i f i c a n c e I no r d e rt og e tt h eo p t i m a lP i c k a n d p l a c et r a j e c t o r yf o rt h e3-D O Fp a r a l l e lr o b o t,t h i sp a p e rt a k e st h er o b o tw h i c hi sd e s i g n e di n d e p e n d e n t l ya st h es t u d yo b j e c ta n dd i s c u s s e si t st r a j e c
10、 t o r yp l a n n i n ga n dm e t h o do fi m p l e m e n t a t i o no fc o n t r o l l i n g F i r s t l y,t h es t r u c t u r ei sa n a l y z e da c c o r d i n gt ot h er o b o t W i t ht h ea i do fv e c t o rm e t h o d,t h ei n v e r s ek i n e m a t i c,v e l o c i t ym o d e la n da c c e l
11、 e r a t i o nm o d e lh a v eb e e np r o p o s e d O nt h i sb a s i s,s i m p l i f y i n gt h eq u a l i t ym o d e lo ft h er o b o tf o r e a r ma n dt h er i g i db o d yd y n a m i cm o d e lo ft h er o b o th a sa l s ob e e nf o r m u l a t e db yt h em e a n so fv i r t u a lw o r kp r i
12、n c i p l e T h i sp r o v i d e sn e c e s s a r yt h e o r yf o u n d a t i o nf o r t h et r a j e c t o r yp l a n n i n g S e c o n d l y,t h eD o o r t r a j e c t o r yb a s e do nt r a p e z o i d a la c c e l e r a t i o n d e c e l e r a t i o nm e t h o di sa n a l y z e d A c c o r d i n
13、 gt oi t sd i s c o n t i n u o u sm o t i o nc u r v e s,at r a j e c t o r ym e t h o dw i t he l l i p t i c a li n t e r p o l a t i o nw h i c hi sb a s e do ne l e c t r o n i cC a n li sp r o p o s e d I nc o n s i d e r a t i o no ft h ek i n e m a t i c sa n dd y n a m i c sc o n s t r a i
14、n s,t h em a t h e m a t i c a lm o d e lo fT i m e o p t i m a lt r a j e c t o r yp l a n n i n gh a sb e e nb u i l t T h e n,t os o l v et h em a t h e m a t i c a lm o d e lo fT i m e o p t i m a lt r a j e c t o r yp l a n n i n g,t h i sp a p e rp r e s e n t sa na d a p t i v e g e n e t i c
15、a l g o r i t h ma n di m p l e m e n t st h ea l g o r i t h mp r o g r a m m i n ga n ds o l v i n gb yu s i n gM A T L A B T h eo p t i m a lP i c k a n d p l a c et i m ef o rt h er o b o ti so b t a i n e d A n dc o m p a r a t i v e l ya n a l y z i n gt h eo p t i m i z a t i o nr e s u l t s
16、b e t w e e nt h ee l l i p t i c a lt r a j e c t o r ya n dD o o r-t r a j e c t o r y T h er e s u l t ss h o wt h a tt h ee l l i p t i c a lt r a j e c t o r yp r o p o s e di nt h i sp a p e ri sm o r ee f f e c t i v et h a nD o o r t r a je c t o r yo ni m p r o v i n gt h er o b o td y n a
17、m i cp e r f o r m a n c ea n dt h ee f f i c i e n c yo fP i c k a n d p l a c e O nt h eb a s i s,i no r d e rt of u r t h e rv e r i f yt h ev a l i d i t yo ft h et 画e c t o r yp l a n n i n gm e t h o dp r e s e n t e di nt h i sp a p e r,t h es i m u l a t i o np l a t f o r mi sb u i l ti nA
18、D A M Sa n dt h es i m u l a t i o ni sc a r r i e do u tb yl e a d i n gt h eo p t i m i z a t i o nr e s u l t so ft h ee l l i p t i c a lt r a j e c t o r yi n t oA D A M S I I大连理工大学硕士学位论文F i n a l l y,t h eh a r d w a r e,t h em o d u l a rd e s i g no ft h et r a j e c t o r yp l a n n i n ga
19、n dt h es o f t w a r eo fr o b o tc o n t r o ls y s t e mh a v eb e e nd e s i g n e db a s e do nP C+S Cc o n t r o ls t r u c t u r e T h eh a r d w a r ed e s i g ni n c l u d e s:i d e n t i f y i n gt h em a i nh a r d w a r ec o n f i g u r a t i o n,c i r c u i td e s i g no fP L Cm o d e l
20、,c i r c u i td e s i g no fs e r v os y s t e m,c i r c u i td e s i g no fs e n s o rs y s t e m T h em o d u l a rd e s i g no ft h et r a je c t o r yp l a n n i n gi n c l u d e s:m o d u l ep i nd e s i g n,i n t e r p o l a t i o np r o c e s sd e s i g n,m o d u l ep a c k a g e T h es o f t
21、 w a r ed e s i g ni n c l u d e s:c o m m u n i c a t i o nm o d u l ed e s i g n,i n t e r a c t i v ei n t e r f a c ed e s i g no fP C,t r a j e c t o r yf u n c t i o nb l o c kd e s i g n,u n d e r l y i n gc o n t r o lp r o g r a md e s i g no fP L C O nt h i sb a s i s,b u i l d i n ge x p
22、e r i m e n t a lp l a t f o r ma n dt e s t i n gt h ee l l i p t i c a li n t e r p o l a t i o nt r a j e c t o r y T h er e s u l t ss h o w e dt h a tt h em e t h o dp r o p o s e dC a ne f f e c t i v e l ys a t i s f yt h ec o n d i t i o n so ft h er o b o ts p e e da p p l i c a t i o n s K
23、 e yW o r d s:3-D O FP a r a l l e lR o b o t;T r a j e c t o r yP l a n n i n g;E l e c t r o n i cc a m;E l l i p t i c a lc u r v e;T i m e O p t i m a l;G e n e t i cA l g o r i t h m三自由度并联机器人轨迹规划及其控制实现目录摘要IA b s t r a c t I I1绪j 仑11 1 课题研究背景及意义11 2 三自由度并联机器人发展与研究现状21 2 1 三自由度并联机器人发展概述21 2 2 三自由
24、度并联机器人研究现状41 3 机器人轨迹规划研究现状51 3 1 机器人关节空间轨迹规划61 3 2 机器人操作空间轨迹规划71 4 机器人轨迹规划优化算法综述91 5 课题来源与论文主要研究内容91 6 本章小结1 02 三自由度并联机器人运动学及动力学分析112 1三自由度并联机器人结构分析112 2 三自由度并联机器人运动学分析1 22 2 1 运动学逆解分析1 22 2 2 运动学速度分析1 42 2 3 运动学加速度分析1 62 3 三自由度并联机器人动力学分析1 62 4 本章小结1 83 三自由度并联机器人操作空间轨迹规划1 93 1操作空间轨迹规划任务及问题提出1 93 1 1
25、操作空间轨迹规划任务描述一1 93 1 2 操作空间最优时间轨迹规划问题提出1 93 2 操作空间轨迹规划基本插值算法2 03 2 1 直线插补算法2 13 2 2 圆弧插补算法2 13 3 基于梯形速度策略的门字型轨迹建模2 33 3 1门字型轨迹建模2 3大连理工大学硕士学位论文3 3 2 实例分析2 63 4 基于电子凸轮原理的椭圆轨迹建模2 73 4 1 椭圆插补轨迹建模2 83 4 2 改进S C C A 凸轮运动曲线构造3 03 4 3 实例分析3 33 5 最优时问轨迹规划数学模型建立3 53 6 本章小结3 64自适应遗传算法设计与优化轨迹仿真3 74 1 遗传算法基本原理3
26、74 2 自适应遗传算法设计3 94 2 1 种群规模及编码方式确定一3 94 2 2目标函数及适应度函数确定3 94 3 3 遗传算子确定一4 04 3 基于M A T L A B 的自适应遗传算法编程4 14 4 最优时问轨迹规划优化求解4 24 5 基于A D A M S 环境的机器人轨迹规划仿真4 54 5 1三自由度并联机器人A D A M S 仿真模型建立4 54 5 2 基于A D A M S 环境轨迹规划仿真分析4 64 6 本章小结4 95 三自由度并联机器人轨迹规划控制实现5 05 1 机器人运动控制系统总体设计5 05 2 机器人控制系统硬件设计5 15 2 1 控制系统
27、硬件配置5 15 2 2 控制模块电路设计5 35 2-3 伺服系统电路设计一5 45 2 4 传感器系统电路设计5 45 3 机器人轨迹规划模块化实现5 55 3 1 轨迹规划模块引脚设计5 55 3 2 轨迹规划模块插补流程5 65 3 3 轨迹规划模块封装5 75 4 机器人控制系统软件设计5 95 4 1 通信模块设计5 9三自由度并联机器人轨迹规划及其控制实现5 4 2 控制系统界面设计一6 05 4 3P L C 程序设计6 25 5 机器人轨迹规划实验6 45 6 本章小结6 8结论与展望一6 9参考文献7 1攻读硕士学位期间发表学术论文情况7 4致谢7 5大连理工大学学位论文版
28、权使用授权书,7 6大连理工大学硕士学位论文1绪论1 1 课题研究背景及意义随着信息技术、计算机控制技术的不断发展,作为装备制造业核心功能部件的工业机器人,在自动化生产系统中有着越来越重要的位置。如今,工业机器人已经广泛应用在工业自动化中,用于取代人工来完成焊接、喷涂、装配、包装、搬运等作业,成为降低生产成本、提高工作效率、保障产品质量不可或缺的重要工具。作为工业机器人中主要类别之一,并联机器人是由多分支运动链组成的闭环结构,相比串联工业机器人,具有高刚度、高精度、高负载、结构紧凑等特点【1。2 1。因此,由于具有上述功能和特点,并联机器人迅速成为了学术界和工业界竞相研究的热门领域。少自由度并
29、联机器人于1 9 世纪8 0 年代诞生,其中具有代表性的为法国学者C l a v e l博士研发的D e l t a 机器人【3】如图1 1 所示。该机器人采用平行四边形支链形式,由旋转副驱动可实现末端在三个坐标方向的平动,应用在医疗、电子、包装、食品等轻工行业中能够代替人工完成分拣、拾取、包装等大量重复性工作,可有效解决劳动强度大、工作乏味以及低工作效率等问题。因此,由于具有上述实用价值,三自由度并联机器人在市场上被迅速推广并且需求量日益增加,根据美国A R CA d v i s o r yG r o u p 的调查,目前已经至少有2 5 0 0 0 0 条食品及医药生产线正在应用机器人技术
30、对现有产品线升级【4 1。我国机器人产业起步较晚,在并联机器人领域的研究还比较落后,自主研发的机器人存在通用化程度低、成本高等问题,面对国内市场对机器人曰益增强的需求只能依赖进口来缓解供需矛盾,这在一定程度上制约了我国工业自动化的发展进程。因此,从产业层面说,研究三自由度并联机器人一方面能积极推进机器人产品系列化、通用化的进程,另一方面对促进我国轻工业自动化的发展也有着现实意义。图1 1D e l t a 机器人原型机构F i g 1 1T h ep r o t o t y p em e c h a n i s mo fd e l t ar o b o t三自由度并联机器人轨迹规划及其控制实现
31、轨迹规划是机器人控制的一个重要模块,它对控制系统性能的稳定起着关键作用,其关键技术是如何设计一种可靠轨迹使机器人整个运动过程平稳、可靠,避免奇异位姿以及最大程度减小冲击和振动。目前,国内自主设计和生产的并联拾取机器人一定范围内存在运动曲线不够平滑,控制系统不够稳定的问题,严重影响了工作效率和工作质量,为了从根本上解决这些问题,需要对机器人进行轨迹规划,提出一条合理的轨迹,使其在高速拾取运动的过程中平稳、可靠。而机器人的运动轨迹最终都是在操作空间中表现出来,在操作空间中进行轨迹规划能更简单、清楚地表达机器人使用需要。所以,本文以自主设计的三自由度并联机器人为研究对象,在操作空间中对其轨迹规划方法
32、进行研究,提出一种运动轨迹,不仅保证了高速运动时的良好动态性能,而且提升了机器人的拾取效率。1 2 三自由度并联机器人发展与研究现状1 2 1三自由度并联机器人发展概述在8 0 年代末,工业的蓬勃发展使得在一些轻工行业中,人工拾取、包装的形式无法满足产业发展需求,严重阻碍了劳动生产率的提高。因此,国外一些自动化设备厂家开始将适用分拣、拾取、包装的自动化设备一一D e l t a 机器人推向市场。该机器人凭借高定位精度、高负载能力、结构紧凑等特点在全球范围被广泛推广,并迅速获得了工业界机器人公司和学术界科研人员的重点关注。9 0 年代初,瑞士洛桑的D e m a u r e x 公司【5 l 出
33、售了第一台应用包装领域的D e l t a 机器人,如图1 2 所示。该机器人基座安装在工作平台上,三条机器人手臂则从基座外伸出沿基座平面均匀分布,手臂末端则和三角平台连接,通过电机驱动可以实现三角平台沿着x、】厂、z 方向平移运动。作为第一代D e l t a 机器人产品,该机器人结构尺寸较大、外观朴实,目前,主要应用于包装工业、医疗和制药行业等。9 0 年代末,瑞典A B B 公司开发出灵手(F l e x P i c k e)机器人,如图1 3 所示。由于该机器人是以C l a v e l 教授发明的D e l t a 机构为基础进行开发的,因此,机构形式和工作自由度和D e l t a
34、 机器人均相同,但是外观更加美观,性能更优,并且集成了先进的图像识别技术,在正常工作条件下,该机器人拾取频率可达到1 2 0 件分钟,机器人末端速度可达1 0 米秒。大连理工大学硕士学位论文图1 2D e m a u r e x 公司D e l t a 机器人F i 9 1 2D e l t ar o b o to fD e m a u r e x图1 3A B B 公司F l e x P i c k e 机器人F i 9 1 3F i e x P i c k er o b o to fA B B进入2 1 世纪后,随着工业设计水平、工业控制技术、图像处理技术的快速发展,机器人产业研发水平有了
35、进一步提升,D e l t a 机器人也逐渐开始朝着高精度、高灵活性等方向发展,产品外形设计也愈加美观。近些年,B o s c h、F a n u c、A d e p t 等机器人公司相继推出了D e l t a 机器人系列产品,如图1 4 图1 7 所示,这些产品在部分性能指标和外形上与9 0 年代产品相比有很大提升。图1 4B o s c h 公司D B 4 0 机器人F i g 1 4D B 4 0r o b o to fB o s c h图1 5B o s c h 公司D D 2 3 机器人F i g 1 5D D 2 3r o b o to f B o s c h三自由度并联机器人轨
36、迹规划及其控制实现图1 6F U N A C 公司D e l t a 机器人F i g 1 6D e l t ar o b o to fF U N A C图1 7A d e p t 公司D e l t a 机器人F i g 1 7D e l t ar o b o to fA d e p t至今,D e l t a 机构形式的并联机器人己经先后在瑞士、日本、美国等国家取得超过5 0 项专利,全球销量己达到数万台,其快速性、可靠性及定位精度得到不断提高,已经在医疗、电子、食品、包装等轻工行业中得到了广泛的应用。从当前发展趋势来看,D e l t a机构正朝着结构越来越灵巧,控制系统越来越稳定,智能
37、程度也越来越高的方向发展。1 2 2 三自由度并联机器人研究现状三自由度并联机器人集机械设计、自动化控制、计算机编程等技术为一体,是自动化技术在工业中成功应用的典范,其主要特点是取代人工完成一些重复、乏味、劳动强度大的工作。伴随D e l t a 机器人几十年的发展,其在商业上得到了成功的运作,吸引了一大批专家和学者加入到了研究队伍。在国外,如美国M a r y l a n d 大学、德国H u m b o l d大学、日本T o h o k u 大学等高等院校的学者已经对D e l t a 机构及其变异构型做了大量理论研究,并取得了显著的成果:而在国内,对D e l t a 机器人及其相关技
38、术的研究起步较晚,大多还停留在实验室阶段。目前,只有大连理工大学、天津大学、燕山大学、哈尔滨工业大学、北京航空航天大学、新松机器人公司、广州数控及中科院沈阳自动化研究所等院校及机构对该类机器人进行了深入的理论探讨。从当前研究情况来说,关于三自由度并联机器人的探讨涉及五个方面问题,包括机构学分析、运动学分析、动力学分析、轨迹规划及控制策略等。其中,运动学分析、动力学分析是实现机器人控制和应用研究的基础,在三自由度并联机器人的研究中占有重要基础性地位,因此,是研究成果比较集中的领域。大连理工大学硕士学位论文机器人运动学分析按照求解方向可分为逆解分析和正解分析,其中,逆解相对容易,正解较为复杂。目前
39、,对于机器人正解分析常用的方法有数值法和解析法(又称矢量法)。数值法是指在给定初值的基础上,利用迭代方式来逼近满足要求的数值,文献 6-8 利用数值法对D e l t a 机器人进行了运动学分析,通过实例验证了求解的正确性,研究表明,采用数值法进行运动学求解计算简单,适用于所有结构形式的并联机器人求解,但同时存在丢失解问题。解析法是通过变量消元,推导出机器人输入和输出之间的映射关系,文献4】中利用矢量法建立了D e l t a 机器人的数学模型,分析了其运动特性,研究表明,相比数值法,该方法简单、直观,不存在多解取舍问题,但消元过程繁琐。机器人动力学分析研究的是机器人驱动力或力矩和末端运动之间
40、的关系,根据求解方向不同,可分为动力学正解分析和动力学逆解分析两类。动力学正解分析是指已知机器人输入端的驱动力,来求解机器人末端的位移、速度和加速度;动力学逆解分析则恰好相反。机器人动力学分析是其控制器参数整定、电机选型的理论基础,是所有从事机器人研发的科研人员关注的领域,但对于并联机器人而言,由于其动力学模型通常是一个多维度、多变量、多参数藕合的复杂非线性系统,因此,对其动力学进行数学建模和求解也变得非常困难。为此,为解决以上问题,许多学者在机器人动力学领域做了大量的研究,提出了多种并联机器人系统的动力学建模的方法,如N e w t o n E u l e r 法、L a g r a n g
41、 e方程法、虚功原理法、K a n e 法和H a m i l t o n 原理法等【1 5 朋】。N e w t o n E u l e r 法是指在多刚体动力学中分别运用牛顿定律和欧拉方程对刚体的平移和转动进行处理的一种方法。该方法虽然推导复杂,但概念清晰、直观,且在求出输出端驱动力力之后,也能求出相应的约束反力,能够对结构设计起到一定的指导作用【】8】;L a g r a n g e 方程法是以系统动能和势能为基础提出一种建模方法,其通过对能量函数微分得到广义外力和广义坐标之间映射关系。该法结构清晰、规范,表达式中不出现约束反力,但推导过程需要对复杂能量函数进行微分计算,过程复杂、计算量
42、大【1 9】;相对以上两种方法,虚功原理法需要提前计算出各个运动部件的速度和加速度,但能消除动力学方程中的约束力和关节惯量,最终得到的动力学方程也较为简洁 2 0-2 2 1。此外,对三自由度并联机器人进行动力学建模的方法还有K a n e 方程法和H a m i l t o n 方程法,这两种方法较新颖,为并联机器人这种多刚体系统动力学研究开辟了一条新的路径,目前,相关研究文献较少,在此不再赘述。1 3 机器人轨迹规划研究现状在机器人操作中,用户往往只给出机器人预期的目标位姿,而为使机器人在整个运动过程中平稳到达预期位姿,则需在满足运动学和动力学约束条件下,确定机器人到达三自由度并联机器人轨
43、迹规划及其控制实现目标位姿的路径和沿着路径每个时刻的位姿、速度及加速度参数,而确定这些轨迹参数的过程即为轨迹规划 2 3】。轨迹规划是工业机器人控制中非常重要的一个领域,也是机器人研究中的一个基本问题。一般来说,在进行轨迹规划时,除考虑机器人运动学和动力学约束外,还要综合考虑机器人工作时某一一个或多个特定优化目标,如冲击、加速度、运动时间等 2 4 1。目前,根据优化目标的不同,通常分为以下三种:一、基于最优时间的优化;二、基于最小能量的优化;三、基于最小脉动(J e r k)的优化。在轨迹规划具体操作中,完成特定优化目标的确定后,还需进一步根据应用条件选择规划空间。通常来说,根据规划空间的不
44、同,工业机器人轨迹规划可以分为关节空间轨迹规划和操作空问轨迹规划两类(2 5 ,目前,已经有许多学者从关节空间和操作空间两方面对机器人轨迹规划相关问题进行了深入探讨,并取得了丰富的研究成果,以下对当前研究成果做一简单的综述。1 3。1 机器人关节空间轨迹规划关节空间轨迹规划是指在关节空间中,通过对关节变量一系列的插值来规划出机器人驱动关节的路径点,具体实施中需要建立关节位移、关节速度和关节加速度与时间之间的映射关系。由于其直接采用受控变量关节角度来描述机器人运动,所以在关节空间进行轨迹规划具有以下优点:(1)无需经过复杂的机器人运动学逆运算,过程简单;(2)避免机构出现奇异性问题。但同时因为机
45、器人系统非线性的特点及关节插值误差的存在,在关机空间进行轨迹规划,难以确定机器人末端的具体位置,从而无法满足需要进行特定路径跟踪的场合 2 6 。图1 8 关节空间轨迹规划流程图F i g I 8T h ef l o wc h a r to f t r a j e c t o r yp l a n n i n gi nj o i n ts p a c e大连理工大学硕士学位论文机器人关节空间轨迹规划基本流程如图1 8 所示,Q(,)、p 尚、反f 1 分别为关节位移、关节速度、关节加速度,心为插值时问间隔。从图中可以看出:关节空间轨迹规划需要在每次插值完成后更新关节参数Q o)、p 凼、反f)
46、。因此,在关节空间进行轨迹规划的本质就是选择合适的关节变量时间函数,使得各个插值点计算更方便以及规划的关节轨迹平滑、连续。目前,机器人关节空间轨迹规划构造时间函数常用的方法有多项式函数法、三角函数法、B 样条曲线法、抛物线法、及摆线法等。T A NG u a n Z h e n g 等 2 7】采用二次多项式和余弦函数在关节空问进行轨迹规划,保证了各个关节的位移、速度、加速度和加加速度曲线的连续;陈丹等【2 8 在关节空问运用三次B 样条曲线对由一系列离散路径点组成的机器人路径进行了逼近,在保证机器人不偏离原有路径的基础上,实现时间最优运动;田西勇、刘晓平等【2 9 1 在关节空问采用非对称组
47、合正弦函数对三自由度机械臂进行了轨迹规划,有效降低了关节的最大速度和最大加速度,使机器人能够快速、平稳地运动到目标位置;A G a S p a r e t t o 等【3 0】运动五次B 样条曲线对六自由度机器人进行了轨迹规划,以最小脉动为优化目标得到了关节空间平滑、稳定的运动轨迹;张勇等1 3 1 1 以D i 锄o n d 并联机器人为研究对象,在关节空间采用三次样条曲线进行轨迹规划,得到了末端运动最优时间;田西勇 3 2】采用连续分段函数、组合正弦函数、优化等速、非对称摆线等方法定义关节加速度,在关节空间得到规划轨迹,同时还分别和摆线运动曲线、3 4 5 插值曲线和4 5 6 7 插值曲
48、线进行了对比。这些方法大多数是以串联机器人为研究对象进行轨迹规划,且大部分采用B 样条曲线、三次样条曲线和多项式插值等方法作为关节插值函数,在考虑机器人运动学和动力学约束的情况下,这些方法在关节空间中有效地避免了末端位置、速度和加速度的突变,效果良好。而在机器人研究领域,在很多情况下绝大多数串联机器人轨迹规划的原理和算法可以直接应用于并联机器人。所以,上述学者在串联机器人研究中取得的成果对文中关于三自由度并联机器人的轨迹规划研究具有重要的参考价值。1 3 2 机器人操作空间轨迹规划与机器人关节空间轨迹规划不同,机器人操作空间轨迹规划是直接在操作空间中对机器人末端的位姿进行规划,具体操作过程中需
49、建立机器人末端的位姿、速度和加速度和时间之间的映射关系。在操作空间直接规划机器人的运动轨迹,可以严格保证机器人末端按照特定路径运动,在有避障需求和连续轨迹跟踪的场合,该方法相对关节空间轨迹规划方法更加有效。但由于机器人控制指令是在关节空间中生成,因此,该方法则需三自由度并联机器人轨迹规划及其控制实现通过运动学逆运算来完成操作空间到关节空问的转换,这样势必会增加控制器求解负担。除此之外,在操作空问进行轨迹规划时,还需校验规划的轨迹是否避开奇异位点,否则会出现速度失控的情况,对机器人本体结构造成破坏。图1 9 操作空间轨迹规划流程图F i g 1 8T h ef l o wc h a r to f
50、t r a j e c t o r yp l a n n i n gi nw o r k i n gs p a c e操作空间轨迹规划基本流程如图(1 9)所示,s(,)为所构造的轨迹函数,出为插值时间。从图中可以看出:在操作空间进行轨迹规划首先需要在插值时问点根据所选择轨迹函数更新s(f)、,矗、f 徜,然后则经过机器人运动学逆运算求出对应位姿的关节参数Q(t)、D f、D f、。因此,在操作空间进行轨迹规划的本质就是选择合适的末端轨迹函数,使得各个插值点计算更方便以及规划的末端轨迹和关节轨迹平滑、连续。目前,介绍机器人操作空间轨迹规划的文献并不多,现有规划方法主要有直线插值法、圆弧插值法、