收藏 分销(赏)

高二数学教学案例.doc

上传人:快乐****生活 文档编号:4299948 上传时间:2024-09-04 格式:DOC 页数:9 大小:144.26KB
下载 相关 举报
高二数学教学案例.doc_第1页
第1页 / 共9页
高二数学教学案例.doc_第2页
第2页 / 共9页
高二数学教学案例.doc_第3页
第3页 / 共9页
高二数学教学案例.doc_第4页
第4页 / 共9页
高二数学教学案例.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、抛物线的简单几何性质教学案例刘方杰(一)教学题目:抛物线的简单几何性质第一课时(二)授课类型:新授课(三)教学目标:知识与技能:1、从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力。2、掌握抛物线的几何性质、范围、对称性、顶点、离心率,能根据给出条件求抛物线的标准方程,了解抛物线的通径及画法。过程与方法:经历由抛物线的标准方程推导抛物线的性质,培养学生数形结合及方程的思想。情感、态度与价值观:训练学生分析问题、解决问题的能力,了解抛物线在实际问题中的初步应用,培养学生的应用意识,进而培养学生乐于学习数学的兴趣。(四)教学重点:掌握抛物线的几何性质,使学生能根据给出的

2、条件求出抛物线的标准方程和一些实际应用。(五)教学难点:抛物线各个知识点的灵活应用。(六)教学方法:采用引导式、讲练结合法;多媒体课件辅助教学。(七)课时分配:1课时(八)教学媒体:多媒体课件(九)学情分析:我授课的学生大部分数学基础不太好,尤其理解能力、运算能力、思维能力等方面参差不齐,所以在教学中注重双基的训练。(十)教学步骤:教学环节教学内容教师活动学生活动设计意图一、导入1、 抛物线的定义:平面内与一个点F和一条定直线L的距离相等的点的轨迹叫做抛物线。点F焦点,直线L准线。2、 抛物线的标准方程。 图形标准方程焦点坐标准线方程3、唐朝王翰在凉州词中有“葡萄美酒夜光杯,欲饮琵琶马上催”的

3、句子,诗中提到“夜光杯”。问题1:如果测得酒杯口宽4cm,杯深8cm,试求抛物线方程。解:如图建立平面直角坐标系,则可知A(-2,8),B(2,8) 所以设抛物线的方程为:A、B点在抛物线上,代入抛物线方程,可得P= 则所求的抛物线方程为: 问题2:研究酒杯轴截面所在曲线的几何性质。老师展示结论。提出问题,引导学生由“数学模型”到“数学问题”的解决问题的方法。展示解题过程。抛物线的定义及标准方程由学生口述。 提出问题由学生完成,引导学生由“数学模型”到“数学问题”的解决问题的方法。并思考抛物线的几何性质。(学生说出结题思路)提出这一问题的研究方法对比、数形结合。通过诗句中的“夜光杯”模型引发学

4、生探究问题本质的热情,同时巩固抛物线方程的知识并提出本节课的标题,起着承上启下的自然过度。二、学生自主、合作学习一、我们根据抛物线的标准方程来研究它的几何性质。1、 范围: 2、 对称性:关于x轴对称,抛物线的对称轴叫做抛物线的轴3、 顶点:(0,0) 抛物线和它的轴的交点叫做抛物线的的顶点。4、 离心率:e=1抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示。二、结合抛物线y2=2px(p0)的标准方程和图形,探索其的几何性质:师生共同完成y2=2px(p0)性质的探究教师设计表格学生根据图像特征口述内容。学生自学,小组谈论其它性质抛物线的几何性质和填表。初步了解

5、抛物线的几何性质。自主探究的方式掌握抛物线的几何性质,增加学习的积极性。三、学生展示成果;教师点评标准方程图形范围对称 轴关于x轴对称关于x轴对称关于y轴对称关于y轴对称焦点坐标准线方程顶点(0,0)离心率教师总结学生展示学习成果,提示各种形式的共性与不同学生展示成果区别这四种形式,找到共同点,建构完善的知识体系。四、知识应用拓展与教师指导结题技巧典型例题:例1、已知抛物线关于x轴对称,顶点在坐标原点,并且过点M(2, ),求它的标准方程.解:因为抛物线关于X轴对称,他的顶点在原点,并且经过点M(,),所以可设他的标准方程为因为点M在抛物线上,所以即p=2因此所求方程是变式:如果抛物线关于坐标

6、轴对称呢?例2、已知抛物线一点M横坐标为9,它到焦点的距离为10,求抛物线的标准方程及M点得坐标。解:由题意可知,抛物线开口向右,准线为:X=-p/2,M到焦点的距离等于到准线的距离,即9+p/2=10,所以p=2。所以抛物线的标准方程y2=4x。由于M点得横坐标为9,带入抛物线方程,可得纵坐标为+6或者-6.即M(9,6)或者(9,-6).变式:已知x2=2py (p0),M点纵坐标为9,它到焦点的距离为10,则抛物线的标准方程。例3、斜率为1的直线过抛物线y2=4x的焦点且与抛物线交于A、B两点,求弦/AB/的长度。法一:直接求两点坐标,计算弦长(运算量一般较大);法二:设而不求,运用韦达

7、定理,计算弦长(运算量一般);法三:设而不求,数形结合,活用定义,运用韦达定理,计算弦长.变式3,若直线过焦点且与X轴垂直,则弦/AB/的长度。(介绍通径=2p)有什么简单的方法吗?画出抛物线的草图。练习:小卷子上的1-5题(基础篇) 6-7(能力篇)教师适当引导提示,引导同学共同纠错和规范过程的书写。教师适当提示,让学生注意抛物线的定义。画出草图,适当提示。教师及时纠正,规范过程。介绍通径=2p分层布置任务。学生板书过程学生练习学生自己先谈思路,然后让两个不同思路解题的同学分别板书过程。学生思考说出自己的想法学生自己做题。学生可以小组讨论得出结论。学会画抛物线的草图。初步应用性质解题变式练习

8、为了让学生深刻理解抛物线的几何性质,达到熟练应用。对比两种不同解题思路,让学生体会用定义,把到焦点的距离转化为到准线的距离,可以减少计算。学会相互转化。学会一题多解,培养学生发散思维和数形结合的思想。巩固所学知识,解决实际问题,培养应用、组合作交流的意识。让不同层次的学生都能学懂数学。五、学生小结、教师完善1、再现上课开始时师生共同总结的表格2、强调例3中学习的数学结合的思想。教师大屏幕展示,强调重点。学生回顾帮助学生建立完善的知识体系,培养数学结合的思想,为高三做好铺垫。六、精选作业P64 A组的2-6题(必作)B组的1题(选作)教师布置作业学生课后作业作业以落实教材为主,强化基础,巩固为标,可以让学有余力的同学有所发展,体现分层教学的理念。(十一)板书设计:题目:抛物线的简单几何性质1、 复习引入:2、 抛物线的简单几何性质:(表格)3、 应用: 例1 变式1 ; 例2 变式2; 例3、变式3 总结:数形结合4、 练习:5、 小结与复习:(十二) 教学后记:抛物线的简单几何性质教学案例年级:高二学科:数学 姓名:刘方杰

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服