收藏 分销(赏)

高一数学函数的基本性质试题及答案.doc

上传人:快乐****生活 文档编号:4293146 上传时间:2024-09-04 格式:DOC 页数:6 大小:189.51KB
下载 相关 举报
高一数学函数的基本性质试题及答案.doc_第1页
第1页 / 共6页
高一数学函数的基本性质试题及答案.doc_第2页
第2页 / 共6页
高一数学函数的基本性质试题及答案.doc_第3页
第3页 / 共6页
高一数学函数的基本性质试题及答案.doc_第4页
第4页 / 共6页
高一数学函数的基本性质试题及答案.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、新课标高一数学同步测试(4)第一单元(函数的基本性质)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。1下面说法正确的选项( )A函数的单调区间可以是函数的定义域B函数的多个单调增区间的并集也是其单调增区间C具有奇偶性的函数的定义域定关于原点对称D关于原点对称的图象一定是奇函数的图象2在区间上为增函数的是 ( ) A B C D3函数是单调函数时,的取值范围 ( ) A B C D 4如果偶函数在具有最大值,那么该函数在有 ( ) A最大值 B最小值 C 没有最大值 D 没有最小值5函数,是 ( ) A偶函数 B奇函数

2、 C不具有奇偶函数 D与有关6函数在和都是增函数,若,且那么( ) A B C D无法确定 7函数在区间是增函数,则的递增区间是 ( )A B C D8函数在实数集上是增函数,则 ( )A B C D 9定义在R上的偶函数,满足,且在区间上为递增,则( ) A B C D10已知在实数集上是减函数,若,则下列正确的是 ( ) A B C D二、填空题:请把答案填在题中横线上(每小题6分,共24分).11函数在R上为奇函数,且,则当, .12函数,单调递减区间为 ,最大值和最小值的情况为 .13定义在R上的函数(已知)可用的=和来表示,且为奇函数, 为偶函数,则= .14构造一个满足下面三个条件

3、的函数实例,函数在上递减;函数具有奇偶性;函数有最小值为; .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15(12分)已知,求函数得单调递减区间.16(12分)判断下列函数的奇偶性; ; 。17(12分)已知,求.18(12分)函数在区间上都有意义,且在此区间上为增函数,;为减函数,.判断在的单调性,并给出证明.19(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。生产台的收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差.求出利润函数及其边际利润函数;求出的利润函数及其边际利润函数是否具有相同的最大值;你认为本题

4、中边际利润函数最大值的实际意义.20(14分)已知函数,且,试问,是否存在实数,使得在上为减函数,并且在上为增函数.参考答案(4)一、CBAAB DBAA D二、11; 12和,; 13; 14 ;三、15 解: 函数,故函数的单调递减区间为.16 解定义域关于原点对称,且,奇函数.定义域为不关于原点对称。该函数不具有奇偶性.定义域为R,关于原点对称,且,故其不具有奇偶性.定义域为R,关于原点对称, 当时,;当时,;当时,;故该函数为奇函数.17解: 已知中为奇函数,即=中,也即,得,.18解:减函数令 ,则有,即可得;同理有,即可得;从而有 *显然,从而*式,故函数为减函数.19解:.;,故当62或63时,74120(元)。因为为减函数,当时有最大值2440。故不具有相等的最大值.边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大.20解:.有题设当时,则 当时,则 故.北京家教 上海家教 找家教上阳光家教网全国最大家教平台

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服