1、高考数学复习易做易错题精选平面向量一、选择题:1在中,则的值为 ( )A 20 B C D 错误认为,从而出错.略解: 由题意可知,故=.2关于非零向量和,有下列四个命题: (1)“”的充要条件是“和的方向相同”; (2)“” 的充要条件是“和的方向相反”; (3)“” 的充要条件是“和有相等的模”; (4)“” 的充要条件是“和的方向相同”;其中真命题的个数是 ( )A 1 B 2 C 3 D 4错误分析:对不等式取等号的条件认识不清.答案: B.3已知O、A、B三点的坐标分别为O(0,0),A(3,0),B(0,3),点P在线段AB上且 =t (0t1)则 的最大值为() A3B6C9D1
2、2正确答案:C 错因:学生不能借助数形结合直观得到当|OP|cosa最大时, 即为最大。4若向量 =(cosa,sina) , =, 与不共线,则与一定满足( )A 与的夹角等于a-bB C(+)(-)D 正确答案:C 错因:学生不能把、的终点看成是上单位圆上的点,用四边形法则来处理问题。5已知向量 =(2cosj,2sinj),j(), =(0,-1),则 与 的夹角为( )A-jB+jCj-Dj正确答案:A 错因:学生忽略考虑与夹角的取值范围在0,p。6o为平面上的定点,A、B、C是平面上不共线的三点,若( -)(+-2)=0,则DABC是()A以AB为底边的等腰三角形B以BC为底边的等腰
3、三角形C以AB为斜边的直角三角形D以BC为斜边的直角三角形正确答案:B 错因:学生对题中给出向量关系式不能转化:2不能拆成(+)。7已知向量M= | =(1,2)+l(3,4) lR, N=|=(-2,2)+ l(4,5) lR ,则MN=( )A (1,2) B C D 正确答案:C 错因:学生看不懂题意,对题意理解错误。8已知,若,则ABC是直角三角形的概率是( )A B C D分析:由及知,若垂直,则;若与垂直,则,所以ABC是直角三角形的概率是.正确答案:C9设a0为单位向量,(1)若a为平面内的某个向量,则a=|a|a0;(2)若a与a0平行,则a=|a|a0;(3)若a与a0平行且
4、|a|=1,则a=a0。上述命题中,假命题个数是( )A.0B.1C.2D.3正确答案:D。错误原因:向量的概念较多,且容易混淆,注意区分共线向量、平行向量、同向向量等概念。10(磨中)已知|a|=3,|b|=5,如果ab,则ab= 。正确答案:。15。错误原因:容易忽视平行向量的概念。a、b的夹角为0、180。11 O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足,则P的轨迹一定通过ABC的( ) (A)外心 (B)内心 (C)重心 (D)垂心正确答案:B。错误原因:对理解不够。不清楚与BAC的角平分线有关。12如果,那么 ( )A B C D在方向上的投影相等正确答案:D。错
5、误原因:对向量数量积的性质理解不够。13向量(3,4)按向量a=(1,2)平移后为 ( )A、(4,6) B、(2,2) C、(3,4) D、(3,8)正确答案: C错因:向量平移不改变。14已知向量则向量的夹角范围是( ) A、/12,5/12 B、0,/4 C、/4,5/12 D、 5/12,/2 正确答案:A错因:不注意数形结合在解题中的应用。15将函数y=2x的图象按向量 平移后得到y=2x+6的图象,给出以下四个命题: 的坐标可以是(-3,0) 的坐标可以是(-3,0)和(0,6) 的坐标可以是(0,6) 的坐标可以有无数种情况,其中真命题的个数是 ( )A、1 B、2 C、3 D、
6、4正确答案:D错因:不注意数形结合或不懂得问题的实质。16过ABC的重心作一直线分别交AB,AC 于D,E,若 ,(),则的值为( )A 4 B 3 C 2 D 1正确答案:A错因:不注意运用特殊情况快速得到答案。17设平面向量=(2,1),=(,1),若与的夹角为钝角,则的取值范围是( )A、 B、C、 D、答案:A点评:易误选C,错因:忽视与反向的情况。18设=(x1,y1),=(x2,y2),则下列与共线的充要条件的有( ) 存在一个实数,使=或=; |=| |; ; (+)/()A、1个 B、2个 C、3个 D、4个答案:C点评:正确,易错选D。19以原点O及点A(5,2)为顶点作等腰
7、直角三角形OAB,使,则的坐标为( )。A、(2,-5) B、(-2,5)或(2,-5) C、(-2,5) D、(7,-3)或(3,7)正解:B设,则由 而又由得 由联立得。误解:公式记忆不清,或未考虑到联立方程组解。20设向量,则是的( )条件。A、充要 B、必要不充分 C、充分不必要 D、既不充分也不必要正解:C若则,若,有可能或为0,故选C。误解:,此式是否成立,未考虑,选A。21在OAB中,若=-5,则=( )A、 B、 C、 D、正解:D。(LV为与的夹角)误解:C。将面积公式记错,误记为22在中,有,则的形状是 (D)A、 锐角三角形 B、直角三角形 C、钝角三角形 D、不能确定错
8、解:C错因:忽视中与的夹角是的补角正解:D23设平面向量,若与的夹角为钝角,则的取值范围是 (A)A、 B、(2,+ C、( D、(-错解:C错因:忽视使用时,其中包含了两向量反向的情况正解:A24已知A(3,7),B(5,2),向量平移后所得向量是 。 A、(2,-5), B、(3,-3), C、(1,-7) D、以上都不是 答案:A 错解:B 错因:将向量平移当作点平移。25已知中, 。 A、锐角三角形 B、直角三角形 C、钝角三角形 D、不能确定 答案:C 错解:A或D错因:对向量夹角定义理解不清26正三角形ABC的边长为1,设,那么的值是 ( )A、 B、 C、 D、正确答案:(B)错
9、误原因:不认真审题,且对向量的数量积及两个向量的夹角的定义模糊不清。27已知,且,则 ( )A、相等 B、方向相同 C、方向相反 D、方向相同或相反正确答案:(D)错误原因:受已知条件的影响,不去认真思考可正可负,易选成B。28已知是关于x的一元二次方程,其中是非零向量,且向量不共线,则该方程 ( )A、至少有一根 B、至多有一根C、有两个不等的根 D、有无数个互不相同的根正确答案:(B)错误原因:找不到解题思路。29设是任意的非零平面向量且互不共线,以下四个命题: 若不平行其中正确命题的个数是 ( )A、1个 B、2个 C、3个 D、4个正确答案:(B)错误原因:本题所述问题不能全部搞清。二
10、填空题:1若向量=,=,且,的夹角为钝角,则的取值范围是_. 错误分析:只由的夹角为钝角得到而忽视了不是夹角为钝角的充要条件,因为的夹角为时也有从而扩大的范围,导致错误. 正确解法: ,的夹角为钝角, 解得或 (1) 又由共线且反向可得 (2) 由(1),(2)得的范围是答案: .2有两个向量,今有动点,从开始沿着与向量相同的方向作匀速直线运动,速度为;另一动点,从开始沿着与向量相同的方向作匀速直线运动,速度为设、在时刻秒时分别在、处,则当时, 秒正确答案:23设平面向量若的夹角是钝角,则的范围是 。 答案: 错解: 错因:“”与“的夹角为钝角”不是充要条件。4是任意向量,给出:,方向相反,都
11、是单位向量,其中 是共线的充分不必要条件。 答案: 错解: 错因:忽略方向的任意性,从而漏选。5若上的投影为 。正确答案:错误原因:投影的概念不清楚。6已知o为坐标原点,集合,且 。正确答案:46错误原因:看不懂题意,未曾想到数形结合的思想。三、解答题:1已知向量,且求 (1) 及; (2)若的最小值是,求实数的值. 错误分析:(1)求出=后,而不知进一步化为,人为增加难度; (2)化为关于的二次函数在的最值问题,不知对对称轴方程讨论. 答案: (1)易求, = ;(2) = = 从而:当时,与题意矛盾, 不合题意; 当时, ; 当时,解得,不满足; 综合可得: 实数的值为.2在中,已知,且的
12、一个内角为直角,求实数的值.错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论.答案: (1)若即 故,从而解得; (2)若即,也就是,而故,解得; (3)若即,也就是而,故,解得 综合上面讨论可知,或或3已知向量m=(1,1),向量与向量夹角为,且=-1,(1)求向量;(2)若向量与向量=(1,0)的夹角为,向量=(cosA,2cos2),其中A、C为DABC的内角,且A、B、C依次成等差数列,试求|+|的取值范围。解:(1)设=(x,y)则由=得:cos= 由=-1得x+y=-1 联立两式得或=(0,-1)或(-1,0)(2) =得=0若=(1,0)则=-10故(-1,0
13、) =(0,-1)2B=A+C,A+B+C=p B= C=+=(cosA,2cos2) =(cosA,cosC) |+|= = =0A02A-1cos(2A+)0当m0时,2mcos2q0,即f()f() 当m0时,2mcos2q0,即f()f()5已知A、B、C为DABC的内角,且f(A、B)=sin22A+cos22B-sin2A-cos2B+2(1)当f(A、B)取最小值时,求C(2)当A+B=时,将函数f(A、B)按向量平移后得到函数f(A)=2cos2A求解:(1) f(A、B)=(sin22A-sin2A+)+(cos22B-cos2B+)+1 =(sin2A-)2+(sin2B-
14、)2+1当sin2A=,sin2B=时取得最小值,A=30或60,2B=60或120 C=180-B-A=120或90 (2) f(A、B)=sin22A+cos22()- = =6已知向量(m为常数),且,不共线,若向量,的夹角落为锐角,求实数x的取值范围.解:要满足为锐角 只须0且() = = =即x (mx-1) 0 1当 m 0时x0 或2m0时x ( -mx+1) 0 3m=0时只要x 0时, x = 0时, x 0,(1)用k表示ab;(2)求ab的最小值,并求此时ab的夹角的大小。解 (1)要求用k表示ab,而已知|ka+b|=|akb|,故采用两边平方,得|ka+b|2=(|akb|)2k2a2+b2+2kab=3(a2+k2b22kab)8kab=(3k2)a2+(3k21)b2ab =a=(cos,sin),b=(cos,sin),a2=1, b2=1,ab =(2)k2+12k,即=ab的最小值为,又ab =| a|b |cos,|a|=|b|=1=11cos。=60,此时a与b的夹角为60。错误原因:向量运算不够熟练。实际上与代数运算相同,有时可以在含有向量的式子左右两边平方,且有|a+b|2=|(a+b)2|=a2+b2+2ab或|a|2+|b|2+2ab。8已知向量, ()求的值;()若,且,求的值解(),. , ,即 . . () , , .