1、高一数学必修三复习知识点归纳1.高一数学必修三复习知识点归纳 篇一均匀随机数均匀随机数的产生:我们常用的是0,1上的均匀随机数,如果试验的结果是区间0,1内的任何一个数,而且出现任何一个实数是等可能的,因此就可以用计算器来产生01之间的均匀随机数进行随机模拟,我们常用随机模拟的方法来计算不规则图形的面积。均匀随机函数:均匀随机函数且只能产生0,1区间上均匀随机数。产生a,b区间上均匀随机数:产生a,b区间上均匀随机数,如果x是0,1区间上的均匀随机数,则x(b-a)+a就是a,b区间上的均匀随机数。计算机通过产生均匀随机数进行模拟实验的思路:(1)根据影响随机事件结果的量的个数确定需要产生的随
2、机数的个数,如长度、角度型只用一组即可;而面积型需要两组随机数,体积型需要三组随机数;(2)根据总体对应的区域确定产生随机数的范围;(3)根据事件A发生的条件确定随机数所应满足的关系式。2.高一数学必修三复习知识点归纳 篇二直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制
3、汽车流量来控制空气中NO2的浓度。3.高一数学必修三复习知识点归纳 篇三直线方程:1.点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。2.斜截式:y=kx+b直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。如果x1=x2
4、,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。4.截距式x/a+y/b=1对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。5.一般式;Ax+By+C=0将a
5、x+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=b(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。4.高一数学必修三复习知识点归纳 篇四总体和样本在统计学中,把研究对象的全体叫做总体。把每个研究对象叫做个体。把总体中个体的总数叫做总体容量。为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,.,x-x研究,我们称它为样本.其中个体的个数称为样本容量。简单随机抽样也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立
6、,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。简单随机抽样常用的方法抽签法随机数表法计算机模拟法使用统计软件直接抽取。在简单随机抽样的样本容量设计中,主要考虑:总体变异情况;允许误差范围;概率保证程度。抽签法给调查对象群体中的每一个对象编号;准备抽签的工具,实施抽签;对样本中的每一个个体进行测量或调查。5.高一数学必修三复习知识点归纳 篇五算法1、算法概念:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.2、算法的特征有限性
7、:算法中的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可。顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法。普通性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算其计算都要经过有限、事先设计好的步骤加以解决。概率(1)事件的包含、并事件、交事件、相等事件(2)若AB为不可能事件,即AB=,即不
8、可能同时发生的两个事件,称事件A与事件B互斥;(3)若AB为不可能事件,AB为必然事件,即不能同时发生且必有一个发生的两个事件,称事件A与事件B互为对立事件;概率加法公式:当事件A与B互斥时,满足加法公式:P(AB)=P(A)+P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B)6.高一数学必修三复习知识点归纳 篇六系统抽样1系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。2系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。