1、第第 四四 章章时变电磁场时变电磁场构成方程下 页上 页返 回麦克斯韦第一、二方程是独立方程,后面两个方程可以从中推得。静态场和恒定场是时变场的两种特殊形式。第第 四四 章章时变电磁场时变电磁场 时变电磁场中媒质分界面上的衔接条件的推导方式与前三章类似,归纳如下:4.2.2 分界面上的衔接条件(Boundary Conditions)磁场:电场:折射定律下 页上 页返 回第第 四四 章章时变电磁场时变电磁场结论:在理想导体内部无电磁场,电磁波发生全反射。图4.2.1 媒质分界面例 4.2.1 试推导时变场中理想导体与理想介质分界面上的衔接条件。分析:在理想导体中下 页上 页返 回。为有限值,当
2、。第第 四四 章章时变电磁场时变电磁场根据衔接条件分界面介质侧的场量导体表面有感应的面电荷和面电流。下 页上 页返 回第第 四四 章章时变电磁场时变电磁场这是因为微波碰上金属制品将发生这是因为微波碰上金属制品将发生“短路短路”和反射现象。和反射现象。如果把食物盛在金属容器里加热,即使烧上一个小时,如果把食物盛在金属容器里加热,即使烧上一个小时,容器中的食物温度也不会升高,这是因为微波遇到金属容器中的食物温度也不会升高,这是因为微波遇到金属容器后立即全部反射回去,食物得不到热源加热。更危容器后立即全部反射回去,食物得不到热源加热。更危险的事还在后头,因为高频微波全部反射回去,就形成险的事还在后头
3、,因为高频微波全部反射回去,就形成了电子技术上的了电子技术上的“高频短路高频短路”,这会导致发射微波的电,这会导致发射微波的电子管阳极产生高温,烧到发红而损坏。子管阳极产生高温,烧到发红而损坏。微波炉里为什么不能放入金属?微波炉里为什么不能放入金属?第第 四四 章章时变电磁场时变电磁场微波是一种波长极短的电磁波,波长在1mm到1m之间,其相应频率在300GHz至300MHz之间。为了防止微波对无线电通信、广播和雷达的干扰,国际上规定用于微波加热和微波干燥的频率有四段,分别为:L段,频率为890940MHz,中心波长0.330m;S段,频率为24002500MHz,中心波长为0.122m;C段,
4、频率为57255875MHz,中心波长为0.052m;K段,频率为2200022250MHz,中心波长为0.008m。家用微波炉中仅用L段和S段。第第 四四 章章时变电磁场时变电磁场微波是在电真空器件或半导体器件上通以直流电或50Hz的交流电,利用电子在磁场中作特殊运动来获得的。家用微波炉中应用的是磁控管,通过磁控管把电能转换为微波能。磁控管有脉冲磁控管和连续磁控管两种。微波炉中应用的是连续波磁控管。微波的传播速度接近光速,它在传播过程中能够发生反射和折射它有三个与加热相关的重要特性。微波遇到金属物体,如银、铜、铝等会像镜子反射可见光一样被反射。因此,常用金属隔离微波。微波炉中常用金属制作箱体
5、和波导,用金属网外加钢化玻璃制作炉门观察窗。微波遇到绝缘材料,例如玻璃、塑料、陶瓷、云母等,会像光透过玻璃一样顺利通过。因此,常用绝缘材料制作盘碟,而不影响加热效果。微波遇到含水或含脂肪的食品,能够被大量吸收,并转化为热能。微波炉就是利用这个特性来加热食品的。第第 四四 章章时变电磁场时变电磁场4.3.1 动态位及其微分方程 (Kinetic Potentials and Its Differential Equations)从Maxwell方程组出发,称为动态位,是时间和空间坐标的函数。Kinetic Potentials and Integral Solutions4.3 动态位及其积分解
6、下 页上 页返 回无源场存在矢量位函数。无旋场存在标量位函数。第第 四四 章章时变电磁场时变电磁场经整理后,得由由(2)(1)洛仑兹条件定义A A 的散度下 页上 页返 回矢量恒等式矢量恒等式第第 四四 章章时变电磁场时变电磁场达朗贝尔方程(Dalangbaier Equation)说明下 页上 页返 回 洛仑兹条件是电流连续性原理的体现。若场量不随时间变化,波动方程蜕变为泊松方程简化了动态位与场源之间的关系;确定了 的值,与 共同确定 A;第第 四四 章章时变电磁场时变电磁场4.3.2 动态位方程的积分解 (Integral Solutions of Kinetic Potentials)以
7、时变点电荷为例(Dalangbaier方程,除坐标原点外)返 回下 页上 页 式中 具有速度的量纲,f 1,f2 是具有二阶连续偏导数的任意函数。第第 四四 章章时变电磁场时变电磁场有1.通解的物理意义 或者说,t时刻的响应是 时刻的激励所产生。这是电磁波的滞后效应。说明 f1 以有限速度 向 方向传播,称之为入射波。图4.3.1 入射波 下 页上 页返 回第第 四四 章章时变电磁场时变电磁场在无限大均匀媒质中没有反射波,即 f2=0。图4.3.2 波的入射、反射与透射下 页上 页返 回说明:f2 在 时间内,以速度 向(-)方向前进了距离,故称之为反射波。第第 四四 章章时变电磁场时变电磁场
8、由此推论,时变点电荷的动态标量位为2.动态位的积分的表达式根据叠加定理,连续分布电荷产生的动态标量位为无反射的特解为静电场中,无反射(无限大均匀媒质)下 页上 页返 回第第 四四 章章时变电磁场时变电磁场若激励源是时变电流源时(无反射)电磁波是以有限速度 传播的,光也是一种电磁波。达朗贝尔方程解的形式表明:t 时刻的响应取 决于 时刻的激励源。又称 为滞后位(Retarded Potential)。当场源不随时间变化时,蜕变为恒定场中的位函数(拉普拉斯方程或泊松方程)。下 页上 页返 回第第 四四 章章时变电磁场时变电磁场作业160页:431第第 四四 章章时变电磁场时变电磁场4.4.1 坡印
9、廷定理(Poynting Theorem)在时变场中,能量密度为体积V内储存的能量为(1)(2)Poynting Theorem and Poynting Vector 4.4 坡印廷定理和坡印廷矢量下 页上 页返 回 电磁能量符合自然界物质运动过程中能量守恒和转化定律坡印廷定理;坡印廷矢量是描述电磁场能量流动的物理量。第第 四四 章章时变电磁场时变电磁场代入式(3)得式(2)对 t 求导,则有矢量恒等式(3)下 页上 页返 回第第 四四 章章时变电磁场时变电磁场 物理意义:体积V内电源提供的功率,减去电阻消耗的热功率,减去电磁能量的增加率,等于穿出闭合面 S 的电磁功率。坡印廷定理下 页上
10、页返 回第第 四四 章章时变电磁场时变电磁场恒定场中的坡印廷定理 注意:磁铁与静电荷产生的磁场、电场不构成能量的流动。在恒定场中,场量是动态平衡下的恒定量,能量守恒定律为:坡印廷定理下 页上 页返 回第第 四四 章章时变电磁场时变电磁场 表示单位时间内流过与电磁波传播方向相垂直单位面积上的电磁能量,亦称为功率流密度,S 的方向代表波传播的方向,也是电磁能量流动的方向。4.4.2 坡印廷矢量(Poynting Vector)W/m2 定义坡印廷矢量下 页上 页返 回4.4.1 电磁波的传播第第 四四 章章时变电磁场时变电磁场 例 4.4.1 用坡印廷矢量分析直流电源沿同轴电缆向负载传送能量的过程
11、。设电缆为理想导体,内外半径分别为a 和b。解:理想导体内部电磁场为零。电场强度磁场强度坡印廷矢量下 页上 页返 回图4.4.2 同轴电缆中的电磁能流 第第 四四 章章时变电磁场时变电磁场电源提供的能量全部被负载吸收。流入内外导体间的横截面A 的功率为坡印廷矢量下 页上 页返 回电磁能量是通过导体周围的介质传播的,导线只起导向作用。第第 四四 章章时变电磁场时变电磁场导体吸收的功率为:例 4.4.2 导线半径为a,长为 l,电导率为 ,试用坡印亭矢量计算导线损耗的能量。电场磁场解:思路:下 页上 页返 回设图4.4.3 计算导线损耗的能量第第 四四 章章时变电磁场时变电磁场表明:导体电阻所消耗
12、的能量是由外部传递的。电源提供的能量一部分用于导线损耗另一部分传递给负载下 页上 页返 回图4.4.4 导体有电阻时同轴电缆中的E、H 与S第第 四四 章章时变电磁场时变电磁场电路中正弦量有三要素:振幅、频率和相位。正弦电磁场也有三要素:振幅,频率和相位。Sinusoidal Electromagnetic Field4.5.1 正弦电磁场的复数形式(Sinusoidal Electromagnetic Field Complex Form)4.5 正弦电磁场下 页上 页返 回第第 四四 章章时变电磁场时变电磁场正弦电磁场基本方程组的复数形式场量与动态位的关系下 页上 页返 回第第 四四 章章
13、时变电磁场时变电磁场在正弦电磁场中,坡印亭矢量的瞬时形式为称之为平均功率流密度。S 在一个周期内的平均值为4.5.2 坡印廷定理的复数形式 The Complex Poynting Theorem下 页上 页返 回第第 四四 章章时变电磁场时变电磁场同理实部为平均功率流密度,虚部为无功功率流密度。定义:坡印廷矢量的复数形式可以证明下 页上 页返 回第第 四四 章章时变电磁场时变电磁场对 取散度,展开为下 页上 页返 回 取体积分,利用高斯定理或散度定理,并将代入体积分项,有第第 四四 章章时变电磁场时变电磁场若体积 V 内无电源,闭合面 S 内吸收的功率为有功功率 无功功率可用于求解电磁场问题
14、的等效电路参数下 页上 页返 回第第 四四 章章时变电磁场时变电磁场 例 4.5.1 当平板电容器两极板间加正弦工频交流电压 u(t)时,试分析电容器中储存的电磁能量(忽略边缘效应)。解:忽略感应电场根据全电流定律下 页上 页返 回图4.5.1 两圆电极的平板电容器第第 四四 章章时变电磁场时变电磁场 显然,电容器中储存电场能量,磁场能量忽略不计,电磁场为EQS场。整理得复坡印亭矢量吸收能量(无功功率)下 页上 页返 回第第 四四 章章时变电磁场时变电磁场 解:忽略边缘效应及位移电流,用恒定磁场的方法计算。从安培环路定律,得从电磁感应定律,得 例 4.5.2 N 匝长直螺线管,通有正弦交流电流
15、。试分析螺线管储存的电磁能量。下 页上 页返 回图4.5.2 长直螺线管第第 四四 章章时变电磁场时变电磁场 显然,螺线管中储存磁场能量,电场能量忽略不计,电磁场为MQS场。复坡印亭矢量储存能量(无功功率)下 页上 页返 回第第 四四 章章时变电磁场时变电磁场 4.5.3 波动方程的复数形式及其解 (Wave Equations Complex Form and Solutions)方程的特解形式为式中,称为相位常数,单位为 rad/m。在正弦电磁场中,波动方程的复数形式为和下 页上 页返 回第第 四四 章章时变电磁场时变电磁场思考下 页上 页返 回 滞后时间,滞后相位,故 相位常数。表示A
16、A与 的滞后相位,故亦称滞后因子。或 称为似稳条件。式与恒定磁场、静电场相同,称之为似稳场。当 时,场量不计滞后效应,解的形第第 四四 章章时变电磁场时变电磁场电磁辐射Electromagnetic Radiation4.6 电磁辐射下 页上 页返 回 电磁能量脱离电源以电磁波的形式在空间传播,不再返回电源。产生辐射的原因:产生辐射的设备:辐射的主要参数:辐射场强,方向性和辐射功率。电磁场的变化和有限的传播速度。天线(线天线和面天线)。天线的应用:无线电通信、雷达、微波遥感(军事、水文、农业、海洋、气象、森林等)、生物医学等。第第 四四 章章时变电磁场时变电磁场图4.6.1 电偶极子天线形成的
17、过程一、天线的形成 4.6.1 电偶极子的辐射(Electric Dipoles Radiation)下 页上 页返 回第第 四四 章章时变电磁场时变电磁场二、电磁辐射的过程图4.6.2 电偶极子天线下 页上 页返 回图4.6.3 一个电偶极子在不同时刻的 E 线分布 电偶极子p=qd 以简谐方式振荡时向外激发电磁波。下图是 E 线分别在 的场图。第第 四四 章章时变电磁场时变电磁场 某一瞬间 E 线与 H 线在空间的分布下 页上 页返 回图4.6.4 时单元偶极子天线 E 线与 H 线分布图4.6.5 动态描述单元偶极子天线辐射形成的过程第第 四四 章章时变电磁场时变电磁场三、电偶极子的电磁
18、场远离天线 P 点的动态位为:下 页上 页返 回正弦电磁波研究场点远离天线设天线上不计推迟效应图4.6.6 单元偶极子天线的磁矢量第第 四四 章章时变电磁场时变电磁场图4.6.7 磁矢量分解在球坐标系中分解为下 页上 页返 回第第 四四 章章时变电磁场时变电磁场1.近区下 页上 页返 回图4.6.8 电偶极子的近 区 E 与 H 线的分布第第 四四 章章时变电磁场时变电磁场表明近区内只有电磁能量转换,没有波的传播。思考特点:下 页上 页返 回 忽略推迟效应,在某一时刻电场与静电场中电偶极子产生的电场相似,磁场与恒定磁场中元电流产生的磁场相似,称之为似稳场。时间相位差与远区的能量来自何方?第第
19、四四 章章时变电磁场时变电磁场忽略 的高次项 2.远区 亦称辐射区下 页上 页返 回第第 四四 章章时变电磁场时变电磁场特点:下 页上 页返 回 辐射区电磁场有推迟效应。E、H、S 空间上正交,时间上同相,有波阻抗 相位相同的点连成的面称为等相位面,辐射区的电磁波为球面波。第第 四四 章章时变电磁场时变电磁场下 页上 页返 回辐射是有方向性的,即 Re辐射电阻表示天线辐射电磁能量的能力。表明天线愈长,频率愈高,辐射能量愈大。辐射功率为第第 四四 章章时变电磁场时变电磁场3.辐射的方向性 辐射的方向性用两个相互垂直的主平面上的方向图表示。E 平面是电场所在平面。E 平面的方向性函数为下 页上 页
20、返 回图4.6.9 E 平面方向图第第 四四 章章时变电磁场时变电磁场H 平面是磁场所在平面。H 平面的方向性函数为下 页上 页返 回图4.6.11 立体方向图图4.6.10 H 平面方向图第第 四四 章章时变电磁场时变电磁场 4.6.2 天线和天线阵 (Linear Antenna and Antenna Array)1.天线图4.6.12 开路传输线张开成对称振子 直线对称振子是一种线天线,它是指线的横截面尺寸远比波长小,它的长度 与波长 在同一数量级()上,流经它的电流不再等幅同相,设振子上的电流为正弦分布 。下 页上 页返 回第第 四四 章章时变电磁场时变电磁场 方向因子与波长有关,图
21、中给出四种天线长度的 E 平面方向图。图4.6.13 细线天线的E 平面方向图辐射场特点:下 页上 页返 回球面波;有方向性。,其 E 平面方向因子为第第 四四 章章时变电磁场时变电磁场 2.天线阵:天线阵是由许多指向同一方向的相似天线组成的,这些天线的排列可使能量都传送到预定的方向,其它方向几乎没有辐射。天线阵设计的主要参数是:a 阵列元数目b 阵列元间隔c 每个阵列元 给电流的大小和相位下 页上 页返 回第第 四四 章章时变电磁场时变电磁场图 4.7.2 微波接力示意图微波接力通信图 4.7.4 同步卫星建立全球通信下 页上 页返 回图 4.7.1 视距与天线高度的关系图 4.7.3 通信
22、卫星第第 四四 章章时变电磁场时变电磁场1.在静止轨道上放置太阳能电池帆板,产生500万2.通过“变电站”微波发生器,将直流功率变 为微波功率;3.通过天线阵向地面 定向辐射;4.地面接收站将微波 转换为电能;5.提供用户。kW能量;图 4.7.5 空间太阳能发电站和电力传输 返 回产生产生500500万万kWkW第第 四四 章章时变电磁场时变电磁场对波动方程取散度 得代入洛仑兹条件从洛仑兹条件证明电流连续性原理下 页返 回第第 四四 章章时变电磁场时变电磁场交换微分次序将波动方程(2)代入上式,得 整理得电流连续性方程即上 页返 回第第 四四 章章时变电磁场时变电磁场下 页返 回天 线第第
23、四四 章章时变电磁场时变电磁场陕西省广播电台中波天线下 页上 页返 回第第 四四 章章时变电磁场时变电磁场微波发射天线微波接收天线下 页上 页返 回第第 四四 章章时变电磁场时变电磁场陕西省电视塔上海市电视塔下 页上 页返 回第第 四四 章章时变电磁场时变电磁场下 页上 页返 回微 波 天 线第第 四四 章章时变电磁场时变电磁场下 页上 页返 回微 波 天 线第第 四四 章章时变电磁场时变电磁场下 页上 页返 回微 波 天 线第第 四四 章章时变电磁场时变电磁场上 页返 回微 波 天 线第第 四四 章章时变电磁场时变电磁场图 4.6.14 一个简单的天线阵,画出了r l 时的辐射图。两个波的天
24、线间距为 l/2 激发的相位一致。曲面上的矢径长表示E的数值对q和j 的函数关系。曲面上的曲线,是 j 为常数的曲线,每隔 10 度画一条。为清楚起见,曲面切成了两半。沿着y轴的方向,两个波相加,合成的电场强度是单个天线所产生的两倍。这点在整个yz平面上都对,只要r l。沿着 x 轴,两个波相位相反而互相抵消了。在 xz平面的其他方向上,波并不完全抵消,因为路程差比 l/2 小。每个天线在z轴上的场都是零,所以天线阵的场也是零。下 页返 回第第 四四 章章时变电磁场时变电磁场图 4.6.15 两个波天线,用竖粗线表示,相距l/2,但是在 x=-D/2的一个相位超前p弧度。此时两个波在y z平面
25、上到处都对消了。在 x 轴上的所有点上,两个波相位一致,得到二倍于单个天线的场强。在 z 轴的方向上还是没有辐射。上 页返 回第第 四四 章章时变电磁场时变电磁场 麦克思维是19世纪伟大的英国物理学家、数学家。1831 年 11 月 13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。10岁进入爱丁堡中学学习,14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯
26、丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著论电和磁,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到 1879 年11月5日在剑桥逝世。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。麦
27、克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想像力接连发表了电磁场理论的三篇论文:论法拉第的力线(1855年12 月至1856年2月);论物理的力线(1861 至1862 年);电磁场的动力学理论(1864 年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称完美数学形式表示出来,经后人整理和改写,成为经典电
28、动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著电磁理论。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律棗麦克斯韦速度分布律,从而找到了由微观量求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分
29、析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善形成系统、完整的理论。特别是汤姆逊卓有成效地运用类比的方法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精神财富。摘自大学物理1997(16)5 封三返 回第第 四四 章章时变电磁场时变电磁场雷 达设置在海上的卫星遥感浮标下 页返 回第第 四四 章章时变电磁场时变电磁场遥感卫星接收解调技术微波通讯下 页上 页返 回第第 四四 章章时变电磁场时变电磁场微 波 通 讯雷 达下 页上 页返 回第第 四四 章章时变电磁场时变电磁场遥感卫星影像的应用雷 达上 页返 回