收藏 分销(赏)

测量不确定度与数据处理.pptx

上传人:精*** 文档编号:4224161 上传时间:2024-08-26 格式:PPTX 页数:65 大小:1.16MB
下载 相关 举报
测量不确定度与数据处理.pptx_第1页
第1页 / 共65页
测量不确定度与数据处理.pptx_第2页
第2页 / 共65页
点击查看更多>>
资源描述
实验测量不确定度与数据处理大学物理实验主要内容1-1实验测量的基本知识1-2实验测量不确定度的评定1-3有效数字及其运算1-4实验测量数据的处理1-1测量的基本知识一、物理测量的基本概念运用各种物理仪器和物理方法把待测未知量与已知标准单位同类量作比较,即待测量是该计量单位的多少倍。大多数的测量结果不但有数值而且有单位。816光大证券乌龙指事件程序把买入24个成分股,写成了买入24组180ETF成分股,结果生成巨量订单。2002年11月,一名经纪人看错了爱尔兰低价航空公司Ryanair的股票价格的货币单位,把先令和欧元弄混,结果该股票在伦敦市场的报价上涨了61%,从404.5先令上升到653.7先令。1.直接测量与间接测量 p凡是可以直接用计量仪器和测量量进行比较,便可获得测量结果的,该测量属于直接测量。如:米尺测长度、温度计测温度.p凡是通过与被测量有函数关系的其他量,才得到被测量量值的测量,称为间接测量。如:电功率.1.直接测量与间接测量是相对的。2.直接测量是测量的基础。2.等精度测量和不等精度测量p由同一观察者用同一仪器、同一方法、同一环境测量n次,所得测量值为x1、x2.xn,则把这样在同一种条件下的重复测量称为等精度测量。p在不同条件(观察者、仪器、方法、环境)下的重复测量称为不等精度测量。3.重复测量和单次测量p在等精度的条件下对待测量进行多次直接测量,每一次测量是测量全过程的重新调节,称为重复测量。p只对测量量进行一次测量,称为单次测量。1.测量结果的准确度要求不高,允许粗略地估计误差的大小。2.测量误差远小于仪器误差。3.受条件的限制,如在动态测量中,无法对待测量做重复测量。4.测量的精密度、准确度、精确度p精密度p准确度p精确度精密、不准确准确、不精密精确不精确5.仪器的准确度等级与仪器的公差p选择测量仪器应考虑:准确度等级、测量范围、实际测量量对精度的要求等。p仪器的精密度:仪器的最小读数。最小读数的数值越小,仪器的精密度越高,误差越小。p测量结果的精密度和准确度与测量仪器的精确度等级密切相关。p仪器的公差:仪l游标卡尺:出厂公差就是该游标卡尺类精密度。l指针式电表:仪=Am%l数 字 式 仪 表:仪 =K%V +N D二、测量结果分析的基本概念随机变量的算术平均数,等于“试验结果的各个可能值与其相应的频率f(x=xi)乘积之和”。由于频率f(x=xi)要试验后才能确定,因而算术平均数也必须到试验后才能求出,而且各次试验后,所得到算术平均数也不一定相同,具有随机性。1.多次等精度测量结果的估算(1)算术平均值与数学期望零件重 x公斤99100101件数 m255025频率 f25/10050/10025/100例:例:p 数学期望x是连续的在大量试验下,频率f(x=xi)稳定于概率p(x=xi),而随机变量x的算术平均值也一定稳定于“随机变量x的各个可能值与其相应概率p(x=xi)乘积的总和”,这个“总和”是一个常数,它是算术平均值的稳定值,称为随机变量x的数学期望。p 算术平均值与数学期望数学期望E(x)与算术平均值有紧密联系,都是反映随机变量x的“平均特征”这一统计特征,但它们又有质的差别,E(x)是一个客观存在的理论值,而算术平均值是一个试验值,具有随机性。其中,概率概率密度函数p测量列的标准偏差:p测量列平均值的标准偏差:(2)测量列及测量列平均值的标准偏差u概率密度函数:u正态分布曲线:概率含量68.3%概率含量99.7%特点:单峰性对称性有界性抵偿性(3)正态分布1-2 实验测量不确定度的评定1、定义:测量值测量不确定度用测量的算术平均值来表示由于测量误差的存在而对测量值不能肯定的程度,称为不确定度,它是与测量结果相联系的一个参数。一、不确定度的定义与物理意义2、分类可用概率统计法计算的可用概率统计法计算的A类评定用其它非统计方法估算的用其它非统计方法估算的B类评定3、物理意义:更科学地表示了测量结果的可靠性表示真值在量值之中,显然,量值范围越窄,则测量不确定度越小,用测量值表示真值的可靠性就越高2.求测量列平均值的标准偏差1.用贝塞尔公式求标准偏差二、直接测量标准不确定度的A类评定当测量次数足够多时,测量值分布满足正态分布置信概率68.3%为达到同样的置信概率,应把测量偏差范围扩大,乘上一个t t因子,即:但实验测量中,次数有限所以测量值不满足正态分布,而是遵循t t分布。三种概率下的不同自由度v的tvp值(v=n-1)3.503.503.713.714.034.034.604.605.845.849.939.930.992.372.372.462.462.572.572.782.783.183.184.304.300.951.081.081.091.091.111.111.141.141.201.201.321.320.68765432vtp0.990.950.682.582.582.862.862.982.983.253.253.363.361.961.962.092.092.152.152.262.262.312.311 11.031.031.041.041.061.061.071.07 191498vtp所以直接测量量不确定度A类评定为:三、直接测量标准不确定度的B类评定注意:对于不同的置信概率p,具有不同的A类不确定度。直接测量量不确定度B类评定为:置信概率p与置信因子kp的关系表p0.5000.6830.9000.9500.9550.9900.997kp0.67511.651.9622.583仪器名称米尺游标卡尺千分尺物理天平秒表误差分布正态分布均匀分布正态分布正态分布正态分布C3333误差分布与置信系数C的关系1)不确定度是正态分布或近似高斯分布P=68.3%2)均匀分布P=68.3%3)三角形分布P=68.3%四、总不确定度的合成测量结果:P=68.3%注意:A、B类不确定度的合成时,两者概率需一致。v测量不确定度用一位或二位数表示均可。如果作为间接测量的一个中间结果(中间过程)不确定度最好用二位;首位逢一、二可用两位;对不保留数字一律“只进不舍”,如ux=0.32,取0.4。v测量值末位与不确定度末位相对齐来确定。对保留数字末位采用“4舍6入,5凑偶”规则。五、直接测量结果不确定度书写表示注意事项如:测量结果平均值为2.1445 cm,其标准不确定度计算为0.0124 cm,则测量结果为:2.1440.013 cmv不确定度单位应与测量值单位保持一致。相对不确定度:没有单位,用百分数表示,它更能反映测量的准确程度所取位数0-10%10%-100%取二位定义:表示不确定度ux在整个测量值 中所占百分比,用符号“E”来表示:v不确定度的其它表示:首位逢1和2:取2位有效数字 首位其它数字:取1位有效数字 例:用量程025mm,最小分度值为0.01mm,最大允差为 0.004mm的螺旋测量微器测量钢丝的直径6次,数据如下:D(mm):3.953,3.953,3.950,3.954,3.952,3.953,求直径的A,B类不确定度,并完整表示不确定度测量结果。解:(1)求A类不确定度测量次数为6次,查表得t0.683=1.11,测量结果的不确定度表示:相对不确定度:螺旋测量微器的误差为正态分布,C=3(2)求B类不确定度(3)不确定度的合成六、间接测量量不确定度的估算不确定度传递公式:表示间接测量值与各直接测量值之间的关系式对于间接测量值:对于间接测量值:1.常用函数不确定度的算术合成p 绝对不确定度传递公式:p 相对不确定度传递公式:例如:N=A+B N=AB2.常用函数不确定度的几何合成p 绝对不确定度传递公式:p 相对不确定度传递公式:算术合成的不确定度传递公式简单但得到的是可能的最大偏差例如:N=A+B N=AB不确定度传递公式应按下列步骤进行:(1)对函数求全微分(乘除时或先对函数取自然对数,再求全微分);(2)合并同一变量的系数;(3)将微分号改为不确定度符号,求各项的绝对值之和(算术合成),或求各项的平方再开方(几何合成)。3.运算顺序的选择v函数为和与差关系-先计算绝对不确定度,后计算相对不确定度v函数为积与商关系-先计算相对不确定度,后计算绝对不确定度v函数为先和差后积商关系-先计算相对不确定度,后计算绝对不确定度v函数为先积商后和差关系-先计算绝对不确定度,后计算相对不确定度1-3 有效数字及其运算一、有效数字定义:测量数据中所有可靠数字加上一位可疑数字统称为有效数字。有效数字的最后一位是估读的,为可疑数字。虽然可疑数字不是准确的,是误差所在的位,但仍反映了被测量大小的信息,所以还是有意义的。估读位前的几位数字都为可靠数字。1.实验过程中记录应记几位数字?2.实验后,处理实验数据时数据运算后要保留几位数字?1.有效数字的认定1)在测量数据中1、2、9九个数字,每个数字都为有效数字。2)“0”是特殊数字,其认定应注意以下几种情况:v数字间的“0”为有效数字v数字后的“0”为有效数字v数字前的“0”不是有效数字,表示数量级大小注意:在测量时,数据不能任意多写或少写,即便是“0”也一样。3)有效数字的位数计算,从第一位不是“0”的数字至最后一位。例如:某长为例如:某长为1.34cm1.34cm,有效数字为,有效数字为3 3位位1.34cm=13.4mm=0.0134m1.34cm=13.4mm=0.0134m(只是单位变)(只是单位变)4)在十进制单位中,有效数字的位数与十进制单位的变化无关。5)有效数字的位数多少,在一定程度上反映测量结果的准确度。有效数字位数越多相对误差越小,准确度越大有效数字位数越少相对误差越大,准确度越小2.科学记数法标准式v为计算的方便,对较大或较小的数值,常用10n的形式来书写(n为正整数),通常在小数点前面只写一通常在小数点前面只写一位数字位数字。例如:例如:3210001000m3210001000m采用科学记数为(采用科学记数为(3.210.013.210.01)10105 5mm0.00015600.0000001m0.00015600.0000001m(1.5600.0011.5600.001)10 10-4-4mm(1)加减法则:加减运算所得结果的最后一位,保留到所有参加运算的数中末位数数量级最大的那一位为止。例:217-14.8=结果:20271.32-0.8+6.3+271=结果:348二、有效数字的运算法则202.2347.82(2)乘除法则:积和商的位数与参与运算诸项中有效数字位数最少的那一项相同。例:例:31.522.1=66.192结果:667996.5=5193.5结果:结果:v特殊情况:乘除运算时,参与运算中位数最少的数字,乘除运算时,参与运算中位数最少的数字,若首位是若首位是“8 8”或或“9 9”时,计算结果可以时,计算结果可以多取一位多取一位。例:例:(3)综合运算计算法则:从左到右,按先“乘、除”后“加、减”进行,加、减按加减法则,乘除按乘除法则。例:例:(4)平均值的有效数字:计算重复测量4次以上的数据平均值时,有效数字可多取一位(5)无理数运算的有效数字:取无理数的位数比参与运算中有效数字位数最少的那一位多一位(其中,常数不参与有效数字的运算)。例:例:(6)乘方、开方的法则:乘方、开方运算中,最后结果的有效数字位数与自变量的有效数字位数相同。(7)函数运算的有效数字选取法则:通过改变函数值末位的一个单位,由函数值的变化来决定函数的有效数字位数通常“小于5则舍”,“大于5则入”,“等于5则凑偶”即前一位为奇数则进(奇进),以成偶数;若前一位为偶数则舍(偶舍)。例:二、数值的修约规则尾数的舍入法则注意:2.51取一位有效数字,因为5后有一位1,满足大于5法则,则进习题 P302.下列数值改用有效数字的标准式来表示。(1)光速=(299792458100)米/秒解:(2.99792460.0000010)108 米/秒 或(2.9979250.000001)108 米/秒(3)比热C=(0.0017300.0005)卡/克度解:(1.70.5)10-3 卡/克度3.下列各数值正确的有效数字(1)8.4670.2解:8.50.2(3)0.0026540.0008解:0.00270.0008(4)6523.5870.3解:6523.60.35.假设下列各数值的最后一位都是估计(可疑)的,请以有效数字表示其正确答案。(1)1.7321.74=3.01368解:3.01(2)10.220.08320.41=0.34862464解:0.35(3)解:2103(5)(17.34-17.13)14.28=2.9988解:3.06.计算正式结果及其不确定度的表示式(算术合成和几何合成)。N=A+2B+C-5D,设:A=(38.2060.001)cm,B=(13.24870.0001)cmC=(161.250.01)cm,D=(1.32420.0001)cm解:(1)不确定度的算术合成:这里因为这里因为161.25161.25的末尾数数量的末尾数数量级最大,所以最终结果保留到级最大,所以最终结果保留到百分位,后面小于五舍去。百分位,后面小于五舍去。对不确定度项结果只进不对不确定度项结果只进不舍,数位与测量值对齐。舍,数位与测量值对齐。(2)不确定度的几何合成:8.两分量(10.200.04)厘米和(3.010.03)厘米,用算术合成和几何合成两种方法,相加对其不确定度该如何表示?相乘时其不确定度又该如何表示?解:令A=10.200.04cm,B=3.010.03cm,当两式相加时,令N=A+B,则N=10.20+3.01=13.21cm(1)算术合成法:UN=0.04+0.03=0.07cm,NUN=13.210.07cm(2)几何合成法:NUN=13.210.05cm当两式相乘加时,令N=AB,则N=10.203.01=30.7cm2(1)算术合成法:UN=|BUA|+|AUB|=0.1204+0.306=0.5cm2,NUN=30.70.5cm2(2)几何合成法:UN=30.700.011=0.4cm2NUN=30.70.4cm210.写出下列函数的不确定度表示式,分别用不确定度的算术合成和几何合成两种方法表示(用最合适的方法从不确定度或相对不确定度中选择一种)(1)N=x+y-2z解:算术合成法:几何合成法:(2)Q=k(A2+B2)/2,其中k为常数解:算术合成法:几何合成法:令解:测量列平均值:平均值标准误差:测量次数为10次,在置信概率为68.3%时,t因子则A类不确定度值为:11.用量程为125mm的游标卡尺测量一钢珠直径10次,已知仪器最小分度值为0.02mm,仪器的最大允差仪=0.02mm,测量数据如下,求测量列的平均值、平均值标准误差、测量列的A、B类及合成标准不确定度。次数次数12345678910d(mm)3.323.343.36 3.303.343.383.303.323.343.36游标卡尺的误差为均匀分布,则B类不确定度值为:因此合成不确定度为:结果不确定度表示:相对不确定度为:其置信概率为68.3%1-4实验测量数据的处理一、列表法二、作图法三、逐差法四、测量数据的直线拟合五、计算机实验数据处理一、列表法将一组有关的实验数据和计算过程的中间数据依一定的形式和顺序列成表格。注意:1.根据具体物理问题,列出表格的主题名称,设计条理清楚的栏目、行列的表格,以便记录原始数据。2.表格栏目的设计要注意数据间的联系及计算顺序,利于记录和检查。3.物理量名称(或符号)、单位组成一个项目,写在表格首栏,自定义符号应交代其代表的物理意义。二、作图法在坐标纸上用图形描述物理量之间关系的一种方法,是处理实验数据的一种重要方法,也是实验方法研究问题的一种重要手段。1.作用及优点:(1)直观形象地表示出物理量的变化规律,便于寻找实验规律和总结经验公式。(2)帮助发现实验中个别的测量错误,并通过所绘图线对系统误差进行分析。(3)若图形是依据许多测量数据描出的光滑曲线,该图线便有多次测量取平均值的作用。(4)应用内插法、外推法可以从图形上得出没有直接测量或在一定条件下无法直接测量的某些数值。(5)通过图形可以方便地得到许多有用的参量,如最大值、最小值、直接斜率和截距等。2.作图的要求:(1)作图一定要用坐标纸。如直角坐标纸、单对数坐标纸、双对数坐标纸和、极坐标纸等。(2)画出坐标轴的方向,标明其所代表的物理量及单位。通常横轴为自变量,纵轴为因变量。(3)坐标纸的大小及坐标轴的比例要适当,使数据中可靠的数字在图中仍为可靠,数据中可疑的一位,在图中仍为估读的一位。(4)为避免图线编于图纸的一角,坐标轴的标值不一定从“0”开始。(5)数据点的标出:同一张坐标纸上几条曲线上的数据点应分别用不同的标记,以示区别。(6)描绘图线,可放弃偏离太远的个别点,使实验点均匀地分布在所绘直线的两侧。(7)标明图名称。若用物理量的符号表示图名,应按y-x轴顺序书写。(8)注明作者及日期并将做好的图纸贴在实验报告上。3.图解:根据已作好的图线,可以用解析的方法从图上求出各种参数(1)直线图解(2)曲线改直三、逐差法1.逐差法是一种处理实验数据的重要方法l一次逐差法:把实验测得的数据进行逐项相减,以验证函数是否多项式;或将数据按前后顺序分成两半,后半部与前半部对应项相减后求其平均值。l二次逐差法:把一次逐差值再做逐差,然后才能计算出实验结果的算法。2.逐差法优点:(1)求得值实际上是多次测量结果的平均值,故其准确度较高。(2)克服了大改变量多次测量与仪器设备条件限制的矛盾。四、测量数据的直线拟合v科学实验中,二元或多元变量之间的相互关系,可以分为确定性关系和相关关系。v相关关系是一种数理统计关系,变量间即存在密切关联,却又不能由一个或数个变量的数值精确地求出另一个变量的数值,即存在不确定性。拟合:运用有关误差理论的知识,求一条能最佳地描述原函数的曲线的过程。回归分析:以比较符合事物内部规律性的数学表达式来代表这一函数关系或拟合曲线的方法。1.最小二乘法是直线拟合的常用方法。2.最小二乘法可用于线性参数,也可用于非线性参数。3.变换法:把非线性的问题通过变量代换为线性情况来处理。五、计算机实验数据处理1.用Excel电子表格软件作实验数据的最小二乘法直线拟合。2.用Origin软件作实验数据的最小二乘法直线拟合。(1)工作表(worksheet)窗口(2)Origin基本数据分析功能(3)Origin的绘图功能上课时间:上午9:00下午13:50实验报告要求:实验报告要求:实验目的实验仪器实验内容实验原理数据表格数据及其数据处理结果与讨论注意事项实验名称系别 姓名 学号 组别预习报告实验报告统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的个数,称为该统计量的自由度.自由度计算公式:自由度=样本个数-样本数据受约束条件的个数,即df=n-k(df自由度,n样本个数,k约束条件个数)当在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 环境建筑 > 测绘测量

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服