1、决策理论与方法课程报告数据包络分析法在管理决策运用中的实际案例分析目 录第一章 数据包络分析简介1第二章 数据包络分析法模型12。1 基础知识12。2 C2R模型22。3 模型求解方法4第三章 数据包络分析法案例63。1 工程建设项目评标方法63。2 环保项目评价73。3 科研评价8第四章 总结114.1 DEA方法的优点114.2 DEA方法的缺陷12参考文献12第一章 数据包络分析简介数据包络分析(Data Envelopment Analysis),简称DEA,是由美国著名运筹学家ACharnes等人于1978年首先提出的.是使用数学规划模型评价具有多个输入、多个输出的。部门或“单位”(
2、称为决策单元,简记DMU)间的相对有效性(称为DEA有效)的一种非参数的统计估计方法。数学、经济学和管理科学是这一学科形成的柱石,优化是其研究的主要方法,而DEA的广泛应用是它能得以迅速发展的动力。数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具方法,常被用来衡量拥有相同目标的运营单位的相对效率.这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。但当被衡量的
3、同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。如运营单位有多种投入要素(员工规模、工资数目、运作时间和广告投入),同时也有多种产出要素(利润、市场份额和成长率).在这些情况下,很难让管理者知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低.DEA方法在处理多输入,特别是多输出问题能力上具有绝对优势.第二章 数据包络分析法模型2。1 基础知识(1)决策单元(DMU):我们把具有相同类型的部门、企业或者同一企业不同时期的相对效率进行评价,这些部门、企业或时期称为。评价的依据是决策单元的一组投入指标数据和一组产出指标数据.(2)投入指标:指决策单元
4、在经济和管理活动中需要耗费的经济量,例如固定资产原值、流动资金平均余额、自筹技术开发资金、职工人数、占用土地等。(3)产出指标:指决策单元在某种投入要素组合下,表明经济活动产生成效的经济量,例如总产值、销售收入、利税总额、产品数量、劳动生产率、产值利润率等.(4)指标数据:指实际观测结果,根据投入指标数据和产出指标数据评价决策单元的相对效率,即评价部门、企业或时期之间的相对有效性。2.2 C2R模型设有n个部门(企业),称为n个决策单元,每个决策单元都有p种投入和q种产出,分别用不同的经济指标表示。这样,由n个决策单元构成的多指标投入和多指标产出的评价系统,可以做如下表示:设:n个决策单元(=
5、j=1,2,3,。.,n),每个决策单元有相同的p项投入(输入)(i=1,2,。.,p) ,每个决策单元有相同的 q项产出(输出)(r = 1,2,.。,q).xij第j决策单元的第i项投入yij第j决策单元的第r项产出 (1)即:效率指标hk等于产出加权之和除以投入加权之和,表示第k个决策单元多指标投入和多指标产出所取得的经济效率。可以适当地选择权系数u、v,使得hk1,建立评价第k0个决策单元相对有效性的C2R模型.设第k0个决策单元的投入向量和产出向量分别为:效率指标,在效率评价指标的约束条件下,选择一组最优权系数 U和V,使得h0达到最大值,构造优化模型(分式规划) (2)上述模型中x
6、ik,yjk为已知数(可由历史资料或预测数据得到),vi,uj为变量。模型的含义是以权系数vi,uj为变量,以h0所有决策单元的效率指标为约束,以第k0个决策单元的效率指数为目标.即评价第k0个决策单元的生产效率是否有效,是相对于其他所有决策单元而言的。记,则有矩阵形式(P)(3)作CharnesCooper变换,转化为一个等价的线性规划模型。故将模型转化为其对偶问题为写成向量形式2.3 模型求解方法在评价决策单元是否为DEA有效时,如果利用原线性规划问题:需要判断是否存在最优解,满足:利用对偶线性规划需要判断它的所有最优解都满足:无论是对于线性规划还是对于对偶规划,这都是不容易做到的。因此C
7、harnes 和Cooper引入了非阿基米德无穷小的概念,利用线性规划方法求解。去判断决策单元的DEA有效性。Charnes通过引入具有非阿基米德无穷小量,从而可以利用单纯形方法求解线性规划问题,来判定决策单元的DEA有效性,成功解决了计算和技术上的困难,建立了具有非阿基米德无穷小量的C2R模型.令是非阿基米德无穷小量,它是一个小于任何正数、且大于零的数。最优解为设模型(D)的最优解为l0、s0-、s0+、q0,分三种情况进一步讨论:q0 = 1,且 s0- = 0、s0+ = 0 :决策单元k0为DEA有效。其经济意义是:决策单元k0的生产活动(X0,Y0)同时为技术有效和规模有效.所谓技术
8、有效,是指对于生产活动(X0,Y0),从技术角度来看,资源获得了充分利用,投入要素达到最佳组合,取得了最大的产出效果,效率评价指标 h0=Vp=VD=q0 = 1 。q0 = 1,但至少有某个 si0 0 或者至少有某个 sj0+ 0:决策单元k0为弱DEA有效。其经济意义是:决策单元 k0 不是同时技术有效和规模收益有效。若某个si0 0,表示第 i 种投入指标有 si0 没有充分利用;若某个sj0+ 0,表示第 j 种产出指标与最大产出值尚有 sj0+ 的不足.q0 1:决策单元k0不是DEA有效.其经济意义是:决策单元 k0 的生产活动(X0,Y0)既不是技术效率最佳,也不是规模收益最佳
9、。第三章 数据包络分析法案例3.1 工程建设项目评标方法1假定一待建工程项目, 对应的技术、经济综合指标设为X1 , X2 , , Xm ;Y1 ,Y2 , ,Ys ;其中Xi 表示负向指标,Yr 表示正向指标.有n个投标商, 用xij表示第j 个承包商的第i 个负向指标值, yrj表示第j 个承包商的第r个正向指标值(i =1 , 2 , , m;r =1 ,2 , 。., s ;j =1 , 2 , 。, n), 以负向指标做为输入指标, 正向指标做为输出指标。现有6个承包商进行投标,其各项指标如下:表3。1 承包商各项指标承包商年生产能力投标能力履约保险系数净资产负债率(%)收益利息率(
10、)资产利润率(%)可获信贷(万元)运营资本收益率(%)11.83。22。543.75。294.3810006908721.62.82。138。34。589。288006702632。86。15。1120。53。054。0420003905442。55。44。0140。72.551。23150030。2151。32。21。8225。62.029。5960023.3161。41。91。5214。31。914.3550018.95各指标中, 净资产负债率和收益利息率为负向指标, 其余为正向指标.DEA 评价结论与指标量纲无关, 不必对上述各指标进行无量纲化处理。现以净资产负债率X1 、收益利息率X2
11、 为输入指标, 以年生产能力Y1 、投标能力Y2 、履约保险系数Y3 、资产利润率Y4 、可获信贷Y5 、运营资本收益率Y6 为输出指标, 利用工程建设项目评标模型, 由MATLAB6 .1 软件中的线性规划程序可分别计算出6 个承包商的效率值和优先序, 结果于表3。2。表3。2 各承包商模型效率值承包商承包商1承包商2承包商3承包商4承包商5承包商6模型效率值1.001。001。001。000。85200.7749排序111123发现求得的承包商1、2、3、4效率值均为1,无法进行排序,故引入一个虚拟决策单元,替代评价决策单元,令称Xn+1和Yn+1为输入、输出的决策单元,并且作为这n个承包
12、商决策单元的虚拟决策单元,使原来的各个决策单元相对这个决策单元变得非有效,这样就达到了进一步比较各决策单元差异程度的目的。把虚拟决策单元并入到实际的n个决策单元中,就可得到基于虚拟决策单元的工程建设项目评标的DEA模型:可以验证这一模型(P)的相关DEA理论都是成立的2.于是利用该模型进行计算得到下表表3。3 P模型下各承包商效率计算承包商承包商1承包商2承包商3承包商4承包商5承包商6P模型效率值0。87640。96260。63330。67860.44110。5000排序214365得到各承包商的优劣顺序依次为:2 , 1 , 4 , 3 , 6 ,5 。故应当优先选择承包商2。3。2环保项
13、目评价3现有10个环境保护项目燃烧固体废弃物发电的项目,需要对其进行有效性的评价。各项目的设备、工艺水平相当,其他项目指标如下表表3。4 环保项目指标项目煤炭资金供燃烧的废物输出电能飞灰项目187。2719040.435432。6113257。662651.75项目254.9611232.174789。7212378.541845。02项目385。5018499.924935。7013108.852563.64项目496。9318053。169170。0816067.432432.37项目597.4218074。188831.5416249.792752.78项目665.129687。7368
14、11。1215472。151737。60项目769.0911584.398669。4415763.831986。96项目868。8612314.164568。9210492。732081。35项目976。6510432。539347。3816532.112112.51项目1073.2114416。357392.4311230.652347。46于是将输入选定为煤炭(x1)、资金(x2)、供燃烧的废物(x3),输出选定为输出电能(y1)、飞灰(y2)。将每一个项目当做一个决策单元,运用C2R模型计算出不同环保项目有效性数值,如下表表3.5 各项目相对效率值项目项目1项目2项目3项目4项目5项目6
15、项目7项目8项目9项目10相对效率值0.70481。00000。70460。77500。75731。00001。00000。85981。00000。8908从上表中,可以发现项目2、6、7、9有效性均为1,说明这些项目是相对有效率的,而项目1、3、4、5、8、10有效性均小于1,说明是非DEA有效的,需要改进或者加强控制。3.3 科研评价4四家体育科研所在三年期间有不同的资源投入(平均值) 和不同的产出(省部级课题、发表专著、期刊文章和培养研究生人数) 见下表3。6。表3。6 四家体科所的投入和产出表项目国家体科所北京体科所湖北体科所北京体育大学体科所投入投入资金(万元)28。5216.232
16、7。5721。04高学历(人)12。3812。834。8515。41高职称(人)10.676.4210。4110。40产出课题(篇)4。813.463.673.32专著(部)4。312.714.595.65期刊文章(篇)25.3014.8017。5016。0培养学生(人)4.102.702。308。40模型变量:A, B, C , D 分别为各科研所的权重;E 为待定的比例系数, 求Min :E 约束条件之一:产出约束, 组合体科所产出待评价体科所的产出4。81A +3。46B+3.67C +3。32D3.464。31A +2。71B+4。59C +5。65D2。7125.3A +14。8B+
17、17。5C +16。0D14。84。1A+2。7B+2.3C+8。4D2。7约束条件之二:投入约束, 组合体科所投入待评价体科所的投入待定比例系数28。52A+16。23B+27。57C +21.04D16.23E12.38A+12。87B+34.85C +15。41D12。87E10.67A+6。42B+10.41C +10.4D6。42E约束条件之三:权重之和为1A+B +C +D=1A, B, C , D, E0通过计算得出结果如下表3。7、表3。8表3。7 北京体科所计算结果投入国家北京湖北北体大组合Suplus资金28.555216。2327。5721。040。000。00高学历12
18、.3812.8734.8515。410。000。00高职称10.676。4210。4110。400。000.00产出课题4。813。463。63.323。460。00专著4。312.714。595。652。710.00期刊文章25。3014.8017。5016。014。80培养学生4.102.702.308。402。70权重0.001。000。000。001目标函数1表3。8 湖北体科所计算结果投入国家北京湖北北体大组合Suplus资金28.555216。2327。5721。040。003。58高学历12。3812。8734.8515。410。0017.44高职称10。676.4210。411
19、0.400。000.00产出课题4.813。463。63.323。460。00专著4。312。714。595。652。710.00期刊文章25。3014.8017。5016。014.800。16培养学生4。102。702。308。402。703。70权重0。2120。2600。000.5271目标函数0.90524从表3。7中可看出目标函数值为1,表明北京体科所位于有效边界上,其用适量资源投入,获得较高的产出,工作效率是相对有效的。从表3。8可看出, 目标函数小于1 , 表明湖北体科所不在有效边界上, 是相对非有效的。计算结果解释为:组合体科所由21.2%国家体科所, 26北京体科所及北京体育
20、大学体科所52。7构成, 用了少于90。524%的资源获得不少于湖北体科所的产出。组合体科所少使用资金3.58 万元,高学历17.44 人, 多产出期刊文章0.16 人, 培养学生3。70人。第四章 总结4。1 DEA方法的优点DEA的优点吸引了众多的应用者,应用范围已扩展到美国军用飞机的飞行、基地维修与保养,以及陆军征兵、城市、银行等方面目前,这一方法应用的领域正在不断地扩大它也可以用来研究多种方案之间的相对有效性(例如投资项目评价);研究在做决策之前去预测一旦做出决策后它的相对效果如何(例如建立新厂后,新厂相对于已有的一些工厂是否为有效)DEA模型甚至可以用来进行政策评价。自从数据包络法提
21、出至今,其应用范围日渐广泛.例如它被广泛应用于学校、医院、铁路、银行等公共服务部门的运行效率的评估实证研究。DEA作一种新的效率评估方法,与以前的传统方法相比有很多优点.首先,DEA方法可以用于对具有多投入、多产出的多个决策单元的生产(或经营)绩效性进行评价,而且应用时可以避免像传统方法那样因为各指标量纲的不同而寻求权重因素所带来的诸多困难,其评价结果相对而言比较客观;其次,DEA模型中投入、产出指标的权重可以建立数学规划模型,然后根据实际的数据而产生,而不是事先给定投入与产出的权重权重系数,因此它不受人为主观因素的影响,可避免在权重的分配时评价者的主观意愿对评价结果的造成人为的影响。另外,数
22、据包络法是一种典型的非参数估计方法,应用该方法评价时无须设定评价函数的具体形式,投入产出采用隐函数的形式表示,不同决策单元的评价函数其参数可以变动,针对各个决策单元都将通过数学规划模型的手段给出最优的投入产出函数,从而利用计算简化。数据包络法评价的是决策单元的相对有效性,其生产前沿面可以看成是最优决策单元的投入与产出所组成的一个包络面,如果对应被评价的决策单元在该生产前面上,则称之为DEA有效,否则,称之为非DEA有效以决策单元(DMU)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。这种方法采用数学规划模型,对所有决
23、策单元的输出都“一视同仁”.这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。该方法以经验数据为基础,逻辑上合理,故能够衡量多个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度.最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。4.2 DEA方法的缺陷DEA方法主要用来研究决策单元的多输入多输出的相对有效的绩效评价的有用方法,因此使用这一方法时也存在一些缺陷.首先,它衡量的生产函数边界是确定的,因而它无法分随机因素和测量误差的影响;其次,该方法的绩效
24、效率评价容易受到极值的影响,而且决策单元的效率值对投入、产出指标的选择比较敏感,这就使得如何准确地选取投入、产出指标成为有效使用DEA方法的关键.另外,由于被评价的决策单元都是从最有利于自己的角度分别求取权重,这就导致了这些权重随着决策单元的不同而可能不同。从而使得每个决策单元的特性缺乏有效的可比性;最后,根据DEA评价方法的特点就是只能判断各个决策单元是否DEA有效,而将所有决策单元分为有效和非有效两大类,因而使用该方法进行决策单元的绩效评价时,可能出现大量甚至全部的决策单元为有效的情形,因此传统的DEA方法不能对被评价的决策单元进行排序。参考文献1朱泰英, 孙波, 陈兆均. 基于数据包络分析的工程建设项目评标方法J。 公路交通技术, 2004(2):101102。2盛昭瀚. DEA理论、方法与应用M. 科学出版社, 1996。3张群, 荀志远. 环保项目有效性评价的数据包络分析方法J。 中国管理科学, 2007, 15(5):107112。4董伦红。 数据包络分析(DEA)方法在体育评价中的应用J。 西安体育学院学报, 2004, 21(2):73-74。10