收藏 分销(赏)

椭圆的经典知识总结.doc

上传人:丰**** 文档编号:4118530 上传时间:2024-07-30 格式:DOC 页数:2 大小:34.54KB
下载 相关 举报
椭圆的经典知识总结.doc_第1页
第1页 / 共2页
椭圆的经典知识总结.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、椭圆知识总结班级姓名椭圆的定义:平面内一个动点到两个定点、的距离之和等于常数 ,这个动点的轨迹叫椭圆。这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形。知识点二:椭圆的标准方程1当焦点在轴上时,椭圆的标准方程:,其中2当焦点在轴上时,椭圆的标准方程:,其中;注意:1只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2在椭圆的两种标准方程中,都有和;3椭圆的焦点总在长轴上。当焦点在轴上时椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,知识点三:椭圆的简单几何性质椭圆:的简单几何性质(1)对称性:对于椭

2、圆标准方程:说明:把换成、或把换成、或把、同时换成、原方程都不变,所以椭圆是以轴、轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心.(2)范围:椭圆上所有的点都位于直线和所围成的矩形内,所以椭圆上点的坐标满足,。(3)顶点:椭圆的对称轴与椭圆的交点称为椭圆的顶点。椭圆与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为,,,线段,分别叫做椭圆的长轴和短轴,.和分别叫做椭圆的长半轴长和短半轴长.(4)离心率:椭圆的焦距与长轴长度的比叫做椭圆的离心率,用表示,记作.因为,所以的取值范围是。越接近1,则就越接近,从而越小,因此椭圆越扁;反之,越接近于0,就越接近0

3、,从而越接近于,这时椭圆就越接近于圆。当且仅当时,这时两个焦点重合,图形变为圆,方程为。注意椭圆的图像中线段的几何特征(如下图):(1);;;(2);;;(3);;;知识点四:椭圆与的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于轴、轴和原点对称顶点,轴长长轴长=,短轴长=离心率准线方程注意:椭圆,的相同点:形状、大小都相同;参数间的关系都有和,;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。规律方法:1如何确定椭圆的标准方程? 任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上.确定一个

4、椭圆的标准方程需要三个条件:两个定形条件;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型.2椭圆标准方程中的三个量的几何意义椭圆标准方程中,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:,,且。可借助右图理解记忆:显然:恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边.3如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看,的分母的大小,哪个分母大,焦点就在哪个坐标轴上。4方程是表示椭圆的条件方程可化为,即,所以只有A、B、C同号,且AB时,

5、方程表示椭圆.当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。5求椭圆标准方程的常用方法:待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数的值.其主要步骤是“先定型,再定量”;定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。6共焦点的椭圆标准方程形式上的差异共焦点,则c相同。与椭圆共焦点的椭圆方程可设为,此类问题常用待定系数法求解。7判断曲线关于轴、轴、原点对称的依据:若把曲线方程中的换成,方程不变,则曲线关于轴对称;若把曲线方程中的换成,方程不变,则曲线关于轴对称;若把曲线方程中的、同时换成、,方程不变,则曲线关于原点

6、对称。8如何求解与焦点三角形PF1F2(P为椭圆上的点)有关的计算问题?思路分析:与焦点三角形PF1F2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算解题。将有关线段,有关角()结合起来,建立、之间的关系。 9如何计算椭圆的扁圆程度与离心率的关系? 长轴与短轴的长短关系决定椭圆形状的变化。离心率,因为,用表示为。显然:当越小时,越大,椭圆形状越扁;当越大,越小,椭圆形状越趋近于圆。1.椭圆的定义:(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时1().方程表示椭圆的充要条件是什么?(ABC0,且A,B,C同号,AB)。2。

7、椭圆的几何性质:(1)椭圆(以()为例):范围:;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;准线:两条准线;离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。通径2.点与椭圆的位置关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内3直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交;(2)相切:直线与椭圆相切; (3)相离:直线与椭圆相离;如:直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(答:1,5)(5,+));4、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半

8、径,其中表示P到与F所对应的准线的距离.如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为_(答:10/3);(2)椭圆内有一点,F为右焦点,在椭圆上有一点M,使之值最小,则点M的坐标为_(答:);5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:,当即为短轴端点时,的最大值为bc;6、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则.特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。7、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是(答:);(2)已知直线y=x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x2y=0上,则此椭圆的离心率为_(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:);特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验2

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服