资源描述
必修2 第一章 空间几何体知识点总结
一.空间几何体的三视图
正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度
侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度
俯视图:光线从几何体的上面向下面正投影得到的投影图.反映了物体的长度和宽度
三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等"
二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系(尽可能使更多的点在坐标轴上)
②建立斜坐标系,使=450(或1350)
③画对应图形
在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;
在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
直观图与原图形的面积关系:
三。空间几何体的表面积与体积
⑴圆柱侧面积; ⑵圆锥侧面积:
⑶圆台侧面积:
球的表面积和体积 .
正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥.
第二章 点、直线、平面之间的位置关系知识点总结
一。 平面基本性质即三条公理
公理1
公理2
公理3
图形语言
文字语言
如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
过不在一条直线上的三点,有且只有一个平面.
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号语言
作用
判断线在面内
确定一个平面
证明多点共线
公理2的三条推论:
推论1 经过一条直线和这条直线外的一点,有且只有一个平面;
推论2 经过两条相交直线,有且只有一个平面;
推论3 经过两条平行直线,有且只有一个平面。
二.直线与直线的位置关系
共面直线: 相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。(既不平行,也不相交)
三.直线与平面的位置关系有三种情况:
在平面内——有无数个公共点 . 符号 a α
相交——有且只有一个公共点 符号 a∩α= A
平行——没有公共点 符号 a∥α
说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
1.直线和平面平行的判定
(1)定义:直线和平面没有公共点,则称直线平行于平面;
(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。 符号:
2.直线和平面平行的性质定理:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行,则线线平行。 符号:
3.直线与平面垂直
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。
⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
简记为:线线垂直,则线面垂直.
符号:
4.直线与平面垂直
性质Ⅰ:垂直于同一个平面的两条直线平行。
符号:
性质Ⅱ:垂直于同一直线的两平面平行
符号:
推论:如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
符号语言:a∥b, a⊥α,⇒b⊥α
四.平面与平面的位置关系:
平行——没有公共点: 符号 α∥β
相交——有一条公共直线: 符号 α∩β=a
1.平面与平面平行的判定
(1)定义:两个平面没有公共点,称这两个平面平行;
(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
简记为:线面平行,则面面平行. 符号:
2.平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。
简记为:面面平行,则线线平行。 符号:
补充:平行于同一平面的两平面平行; 夹在两平行平面间的平行线段相等;
两平面平行,一平面上的任一条直线与另一个平面平行;
3.平面与平面垂直的判定
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
⑵判定定理:一个平面经过另一个平面的一条垂线,则这两个平面垂直。
简记为:线面面垂直,则面面垂直. 符号:
推论:如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。
4。平面与平面垂直的性质定理:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
简记为:面面垂直,则线面垂直.
证明线线平行的方法
①三角形中位线 ②平行四边形 ③线面平行的性质 ④平行线的传递性
⑤面面平行的性质 ⑥垂直于同一平面的两直线平行;
证明线线垂直的方法
①定义:两条直线所成的角为90°;(特别是证明异面直线垂直); ②线面垂直的性质
③利用勾股定理证明两相交直线垂直;
④利用等腰三角形三线合一证明两相交直线垂直;
五:三种成角
1.异面直线成角
步骤:1、平移,转化为相交直线所成角;2、找锐角(或直角)作为夹角;3、求解
注意:取值范围:(0。,90。].
2.线面成角:斜线与它在平面上的射影成的角,取值范围:(0。,90。]。
如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。
3.二面角:从一条直线出发的两个半平面形成的图形
取值范围:(0。,180。)
六.点到平面的距离:定义法和等体积法
空间向量与立体几何知识点总结
一.向量基本运算:设,
1. 2.
3. 4。
一、直线与平面、平面与平面的平行与垂直的向量方法
1。若两直线l1、l2的方向向量分别是、,则有l1// l2//,l1⊥l2⊥.
2.若两平面α、β的法向量分别是、,则有α//β//,α⊥β⊥.
3.若直线l的方向向量是,平面的法向量是,则有l//α⊥,l⊥α//
二、空间角的计算
1。两条异面直线所成角的求法
设直线a、b的方向向量为、,其夹角为,则有
2。直线和平面所成角的求法
设直线l的方向向量为,平面的法向量为,直线与平面所成的角为θ,与的夹角为,则有
3.二面角的求法
设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小.若二面角的平面角为,则.
三. 点P到平面α的距离
如果令平面α的法向量为,考虑到法向量的方向,可以得到B点到平面α的距离为
展开阅读全文