1、 第一章 集合与函数概念课时一:集合有关概念1. 集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。2. 一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。3. 集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、(优秀的,漂亮的,聪明的,难的,简单的,都不可以构成集合)(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:a,b,c和a,c,b是表
2、示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2)集合的表示方法:列举法与描述法。1)列举法:将集合中的元素一一列举出来 a,b,c2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。xR| x-32 ,x| x-32语言描述法:例:不是直角三角形的三角形Venn图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:x|x2=55、元素与集合的关系: (1)元素在集合里,则
3、元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:a A非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R课时二、集合间的基本关系1.“包含”关系子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或B)注意:有两种可能(1)A是B的一部分,(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2. 真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA) 或若集合AB,存在xB且x A,则称集合A是集合B的真子集。3
4、“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”4. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集(真子集总比子集少一个)5、集合的性质即:任何一个集合是它本身的子集。AA 空集是任何集合的子集 空集是任何一个非空集合的真子集课时三、集合的运算运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,CSA=韦恩图示SA性 质A A=A A =A B=BAA BA A BBAUA=A AU=AAUB=BUA AUBAUBB(CuA)(CuB)= Cu(AUB)(CuA) U (CuB)= Cu(AB)AU(CuA)=UA(CuA)=