1、 高中数学课程安排必修数学1(必修)第一章:(上)集合 (中) 函数及其表 (下)函数的基本性质第二章:基本初等函数(I) 第三章:函数的应用 数学2(必修)第一章 :空间几何体 第二章:点直线平面第三章:直线和方程 第四章:圆和方程 数学3(必修)第一章 :算法初步 第二章:统计 第三章:概率 数学4(必修)第一章:三角函数(上、下) 第二章:平面向量 第三章:三角恒等变换 数学5(必修)第一章:解三角形 第二章:数列 第三章:不等式 选修文科 选修1-1第一章: 常用逻辑用语 第二章: 圆锥曲线 第三章: 导数及其应用 选修1-2第一章: 统计与案例 第二章: 推理与证明 第三章: 复数
2、选修4-4 坐标系与参数方程 理科 选修2-1第一章: 常用逻辑用语 第二章: 圆锥曲线 第三章:空间向量与立体几何 选修2-2 第一章: 导数及其应用 第二章: 推理与证明 第三章: 复数 选修2-3第一章 : 计数原理 : 第二章 离散型随机变量选修4-1几何证明选讲选修4-4 坐标系与参数方程 选修4-5 不等式选讲 高三阶段复习时间规划表时间节点持续时间 复习阶段 重点目标8月初 60天 第一轮:梳理学习思路 回顾以前学习过的知识,做到“知道自己学过什么”9月初10月 20天 第一轮:梳理知识点和知识体系(一) 梳理高中阶段所有知识点,按照前一阶段确定的学习思路落实每一个知识点10月中
3、11月 60天(自主招生) 有意参加自主招生的同学,需要做好准备 高三第一学期学期末之前,知识结构至少达到高考考查要求;检验复习效果12月1月 30天 第一轮:梳理知识点和知识体系(二) 形成自己完整的知识体系2月 30天 第一轮:高考压轴题 提升难度的同时,巩固之前阶段的基本复习成果3月 60天,高考一模 第二轮:强化训练 熟悉经典的解题方法,从解一道题升华到解一类题,从解一类题到看穿命题意图4月5月 35天,高考二模 第三轮:调整训练 全真、模拟题训练,找感觉的同时全面订正错题,做的万无一失6月 高考,准备充分,轻松应对。各位,享受胜利的果实吧! 高考数学最有效的复习方法怎么样的复习才是科
4、学高效的复习方法?这是一个很多考生都普遍关心的问题,那么请问:高考复习的目的是什么?毫无疑问,当然是高考取得高分。这里再次提醒大家注意的是两种常见的糊涂:其一,已经进入复习了,甚至直到高考结束了,仍不清楚高考数学都考什么?那些是重点?其表现就是,一天到晚整天就是做题,考试还是做题,漫无边际地沉醉于题海中,直到考完才意识到自己做了太多太多的无用功。其二不重视课本教材,表现就是在整个高考复习期间从来没有去翻过课本,直到在高考后才发现有很多高考题就源自于课本,于是追悔莫及。那么到底应该怎么做才能达到最好的效果呢?那么在我们进行高考复习之前就必须要对数学高考试题的试卷结构、考点分布、题型分布、命题思路
5、、解题要求、答题策略等等进行全面深入地了解,有针对性地制定有效的复习策略,再分阶段、分层次、分专题逐步实施。首先,无论从历史还是从现实上看,高考命题都具备较高稳定性的特点。因此,我们可以从历届高考试题中分析得出高考命题的许多信息。数学高考的题型有三种:一是选择题:选择题的解题要求是选判结果、不要过程。就是说,只需判断选择备选答案的对错,而省去了解题思路的探索、解题策略的制定、解题工具的选择以及解题过程的实施等细节,只判结果、不要过程。由此提出的解题要求是:选择题的解答一定要符合“快、准、巧”的要求,最忌讳的是“小题大做”。一道选择题的解答时间只有三分钟左右,超出三分钟时间即使能够得出正确答案也
6、是罔然。因此仅仅停留在会解能解的层次上是远远不够的,选择题的答题要求是必须“快速、准确、巧妙”的选判正确答案,而千万别把小题弄成大题解答。二是填空题:填空题的解题要求是只要结果、不要过程,而最常见的错误是答案不够“完整、严密”。三是解答题:解答题的最大特点是综合性,你不能把什么题都拿来作为解答题。解答题的范围类型目前主要包括:第一,平面向量、三角函数;第二,概率(分布列)与统计(直方图);第三,空间向量、立体几何;第四,函数、导数综合。第五,解析几何;第六,数列、或不等式与函数或解析几何的综合。有两个新的命题趋势在被不少同学因各种原因或理由而忽视掉了。具体说:一是空间向量的综合运用,二是函数导
7、数的综合运用。有些同学没有把这两部分内容全面深入地渗透到原有各个部分内容的解题中,而是把这两部分内容仍然孤立地与原有内容隔离开来。要清醒地认识到,空间向量和函数导数在原有知识内容的基础上,给我们带来了崭新的简洁实用的解题工具,理应引起我们的高度关注。解答题的解题要求是:解题思路清晰(为此可以适当跳步而保持思路的完整清晰),解题过程切忌过于琐碎;选择合适的解题工具;制定合理的解题策略;选择简洁的解题方法。一轮复习的目的是:全面全力夯实基础,切实掌握选择填空题的解题规律,在历次测验中确保基础部分得满分,也就是把该得的分数确实满分拿到手。在一轮复习中,所有同学都要集中全力闯过选择填空题的基础关,否则
8、在高考中很难越过一百分。现实中,很多同学从一开始便投入到漫无目的的、五花八门的、各式各样的题海中。为了在一轮复习中达到此目的,基础稍差些的同学完全可以主动放弃大型的、复杂的综合体的演练,把节省下来的时间和精力再次投入到选择填空题上来,以此进一步夯实基础;而基础好一些的同学,也不要把太多的、主要的精力大面积地投入到解答题上来,而是要分专题、分阶段每天都少量地但是细致地深入地研究一两道大解答题,在解答题上慢慢地、逐步地积累解题经验和解题规律,切不可把摊子铺大。要知道解答题的解题经验和解题规律积累是一个逐步的、漫漫的由量变到质变的过程,坚持重于冲击。二轮复习的目的是:争取分数超过130分。在这个阶段
9、主要是把解答题所涉及到的内容加以综合运用,同时进一步深化高考中常见的数形结合、分类讨论、转化与化归以及函数与方程等数学思想,其核心则是综合能力、创新能力的培养提高。采取的具体办法就是分阶段、分专题、逐一攻破,但最关键的还是在于长期的一点一滴的积累,不断地总结积累常见类型题的解题经验和解题规律。三轮复习的目的是:通过实战模拟,摸索、演练、积累有关答题节奏、答题策略等的经验以及应对出现意外考题的策略,此外还有考试心态的进一步调整等。分析造成考试分数出现大幅度下滑的客观的主要原因,一个是该拿的分数没拿到,二是非智力因素严重干扰。要知道非智力因素调整的好,可以让你发挥超出平时的水平;而非智力因素调整的
10、不好,就会使让你发挥不出平时的水平。高考答题技巧一、历年高考数学试卷的启发 1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向; 2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性; 3.注意题目中的小括号括起来的部分,那往往是解题的关键; 二、答题策略选择 1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说
11、,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答; 2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。 三、答题思想方法 1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.面对含有参数的
12、初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是; 4.选择与填空中出现不等式的题目,优选特殊值法; 5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二
13、次及根的判别式; 若不易判断,则结合两种方法同时化简解题。 8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)及检验; 9.求椭圆或是双曲线的离心率或范围,建立关于a、b、c之间的关系等式或不等式即可; 10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项
14、公式及前n项和公式,体会方程的思想; 12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上; 14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意
15、步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径; 15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量; 16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成; 17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等; 18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定
16、义; 19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成; 20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。 四每分必争 1.答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。 2.在分数上也是每分必争。你
17、得到89分与得到90分,虽然只差1分,但是有本质的不同,一个是不合格一个是合格。高考中,你得556分与得557分,虽然只差1分,但是它决定你是否可以上重本线,关系到你的一生。所以,在答卷的时候要精益求精。对选择题的每一个选择支进行评估,看与你选的相似的那个是不是更准确?填空题的范围书写是不是集合形式,是不是少或多了一个端点?是不是有一个解应该舍去而没舍?解答题的步骤是不是按照公式、代数、结果的格式完成的,应用题是不是设、列、画(线性归化)、解、答?根据已知条件你还能联想到什么?把它写在考卷上,也许它就是你需要的关键的1分,为什么不去做呢? 3.答题的时间紧张是所有同学的感觉,想让它变成宽松的方
18、法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。 4.冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹。在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。 5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。 6.高考只是人生的重要考试之一,其实人生是由每一分钟组成的。把握好人生的每一分钟才能真正把握人生。高考就是广州三模罢了,其实真正的高考是在你生活的每1分钟里。