1、(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)您的书利华 您的教学资源库【www.ShuLiH】(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高一数学必修 1 各章知识点总结(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉
2、快 业绩进步,以下为(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)的全部内容。(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)您的书利华 您的教学资源库【www.ShuLiH】高一数学必修 1 各章知识点总结第一章 集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由 HAPPY 的字母组成的集合H,A,P,Y(3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合3。集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1)用拉丁字母表示集合:A=我校的篮球队
3、员,B=1,2,3,4,5(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z 有理数集 Q 实数集 R1)列举法:a,b,c2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.xR x-32,x|x-323)语言描述法:例:不是直角三角形的三角形4)Venn 图:4、集合的分类:(1)有限集 含有有限个元素的集合(2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合例:x|x2=5二、集合间的基本关系1。“包含”关系子集注意:有两种可能(1)A 是 B 的一部分,;(2)A 与 B 是同
4、一集合.BA 反之:集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 AB 或 BA2“相等关系:A=B (55,且 55,则 5=5)实例:设 A=x|x21=0 B=1,1 “元素相同则两集合相等即:任何一个集合是它本身的子集。AA真子集:如果 AB,且 A B 那就说集合 A 是集合 B 的真子集,记作 AB(或 BA)如果 AB,BC,那么 AC 如果 AB 同时 BA 那么 A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集。有 n 个元素的集合,含有 2n个子集,2n1个真子集三、集合的运算(完整)高一数学必修 1 各章知识
5、点总结(word 版可编辑修改)您的书利华 您的教学资源库【www.ShuLiH】运算类型交 集并 集补 集定 义由所有属于 A 且属于 B 的元素所组成的集合,叫做A,B 的交集 记 作 AB(读 作 A 交B),即 AB=x|x A,且 xB 由所有属于集合A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集记作:AB(读作 A 并 B),即 AB=xxA,或 xB)设 S 是一个集合,A是 S 的一个子集,由 S 中所有不属于A 的元素组成的集合,叫做 S 中子集 A的补集(或余集)记作,即ACSCSA=,|AxSxx且韦恩图示SA性 性 质质AA=A A=AB=BAABA AB
6、BAA=AA=AAB=BAABABB(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=例题:1.下列四组对象,能构成集合的是 ()1.下列四组对象,能构成集合的是 ()A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2。集合a,b,c 的真子集共有 个 SA(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)您的书利华 您的教学资源库【www.ShuLiH】3。若集合 M=yy=x22x+1,xR,N=x|x0,则 M 与 N 的关系是 .4.设集合 A=,B=,若 AB,则的取值范围是 12x
7、xx xaa5.50 名学生做的物理、化学两种实验,已知物理实验做得正确得有 40 人,化学实验做得正确得有 31 人,两种实验都做错得有 4 人,则这两种实验都做对的有 人。6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=。7。已知集合 A=x x2+2x-8=0,B=x x2-5x+6=0,C=x|x2-mx+m2-19=0,若 BC,AC=,求 m 的值 二、函数的有关概念1函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:AB 为从集合 A 到集合 B
8、的一个函数记作:y=f(x),xA其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合f(x)xA 叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1。(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的集合。(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有
9、意义.相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致(两点必须同时具备)(见课本 21 页相关例 2)2值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点 P(x,y)的集合 C,叫做函数 y=f(x),(x A)的图象C 上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在 C上.(2)画法A、描点法:(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改
10、)您的书利华 您的教学资源库【www.ShuLiH】B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设 A、B 是两个非空的集合,如果按某一个确定的对应法则 f,使对于集合 A 中的任意一个元素 x,在集合 B 中都有唯一确定的元素 y 与之对应,那么就称对应 f:AB 为从集合 A 到集合 B 的一个映射。记作“f(对应关系):A(原象)B(象)对于映射f:AB来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集
11、合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.6。分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果 y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA)称为 f、g 的复合函数。二函数的性质1.函数的单调性(局部性质)(1)增函数设函数 y=f(x)的定义域为 I,如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x1,x2,当 x1x2时,都有 f(x1)f(x2),那么就说 f(x)在区间 D 上是
12、增函数。区间 D 称为 y=f(x)的单调增区间。如果对于区间 D 上的任意两个自变量的值 x1,x2,当 x110a10a132.521.510.5-0.5-1-1.5-2-2.5-11234567801132.521.510.5-0.5-1-1.5-2-2.5-112345678011定义域x0定义域 x0值域为 R值域为 R在 R 上递增在 R 上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常xy)(Ra数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过
13、原点,并且在区间上是增函数 特别0),0(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)您的书利华 您的教学资源库【www.ShuLiH】地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;110(3)时,幂函数的图象在区间上是减函数在第一象限内,当0),0(从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于xyyx时,图象在轴上方无限地逼近轴正半轴xx例题:1。已知 a0,a0,函数 y=ax与 y=loga(-x)的图象只能是()2.计算:;=;=;64log2log2733log4222log227log553125 =21343101.016)2()87(064
14、.075.0303.函数 y=log(2x23x+1)的递减区间为 214。若函数在区间上的最大值是最小值的 3 倍,则 a=)10(log)(axxfa2,aa5.已知,(1)求的定义域(2)求使的的取值范围1()log(01)1axf xaax且()f x()0f x x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数)(Dxxfy0)(xfx叫做函数的零点.)(Dxxfy2、函数零点的意义:函数的零点就是方程实数根,亦即函)(xfy 0)(xf数的图象与轴交点的横坐标。)(xfy x即:方程有实数根函数的图象与轴有交点函数0)(xf)(xfy x有零
15、点)(xfy 3、函数零点的求法:Error!Error!(代数法)求方程的实数根;0)(xf(几何法)对于不能用求根公式的方程,可以将它与函数的图)(xfy 象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数)0(2acbxaxy(1),方程有两不等实根,二次函数的图象与轴有02cbxaxx两个交点,二次函数有两个零点(2),方程有两相等实根,二次函数的图象与轴有02cbxaxx一个交点,二次函数有一个二重零点或二阶零点(完整)高一数学必修 1 各章知识点总结(word 版可编辑修改)您的书利华 您的教学资源库【www.ShuLiH】(3),方程无实根,二次函数的图象与轴无交点,02cbxaxx二次函数无零点5。函数的模型 检验收集数据画散点图选择函数模型求函数模型用函数模型解释实际问题符合实际不符合实际