1、乘法公式能力提高题精品文档乘法公式提升练习题一、完全平方公式 (1)(ab2c)2; (2)(x3y2)(x3y2); (3)(x2y)(x24y2)(x2y);(4)(2a3)2(3a2)2 (5)(a2b3c1)(a2b3c1);(6)(s2t)(s2t)(s2t)2; (7)(t3)2(t3)2(t 29)2 二、完全平方式1、若是完全平方式,则k = 2、.若x27xy+M是一个完全平方式,那么M是 3、如果4a2Nab81b2是一个完全平方式,则N= 4、如果是一个完全平方式,那么= 三、公式的逆用1(2x_)2_4xyy2 2(3m2_)2_12m2n_3x2xy_(x_)2 44
2、9a2_81b2(_9b)25代数式xyx2y2等于( )2四、配方思想1、若a2+b22a+2b+2=0,则a2004+b2005=_.2、已知,求=_. 3、已知,求=_.4、已知x、y满足x2十y2十2x十y,求代数式=_.5已知,则= 6、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形?五、完全平方公式的变形技巧1、已知 求与的值。2、已知2ab5,ab,求4a2b21的值 3、已知,求, 4、,求(1)(2) 六、利用乘法公式进行计算(1)972; (2)20022; (3)99298100; (4)49512499 (5)七、“整体思想”在
3、整式运算中的运用1、当代数式的值为7时,求代数式=_.2、 已知,求:代数式的值。3、已知a=1999x+2000,b1999x+2001,c1999x+2002,则多项式a2+b2+c2一abbc-ac的值为( ) A0 B1 C2 D34、 已知时,代数式,当时,代数式 的值5、若,试比较M与N的大小练习:1.若x,y互为不等于0的相反数,n为正整数,你认为正确的是A.xn、yn一定是互为相反数 B.()n、()n一定是互为相反数C.x2n、y2n一定是互为相反数 D.x2n1、y2n1一定相等2、已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 3、若x是不为0的有理数,已知,则M与N的大小是( )AMN B Mb),把余下的部分剪拼成一个矩形(如图),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A BC D 7(1)若x+y10,x3+y3=100,则x2+y2 (2)若a-b=3,则a3-b3-9ab 8.已知x25x+1=0,则x2+=_.收集于网络,如有侵权请联系管理员删除