1、植被光谱分析与植被指数计算在遥感中,常常结合不一样波长范围反射率来增强植被特性,如植被指数(vegetation indices VI)计算,植被指数(VI)是两个或多种波长范围内地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中公布了超过150种植被指数模型,这些植被指数中只有很少数是通过系统实践检查。本文总结既有植被指数,根据对植被波谱特性产生重要影响重要化学成分:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强植被指数,即:宽带绿度、窄带绿度、光运用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数
2、可以简朴度量绿色植被数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层构造、植被在光合作用中对入射光运用效率、测量植被冠层中氮相对含量、估算纤维素和木质素干燥状态碳含量、度量植被中与胁迫性有关色素、植被冠层中水分含量等。包括如下内容: 植被光谱特性 植被指数 HJ-1-HSI植被指数计算1.植被光谱特性植被跟太阳辐射互相关系有别于其他物质,如裸土、水体等,例如植被“红边”现象,即在700nm高反射。诸多原因影响植被对太阳辐射吸取和反射,包括波长、水分含量、色素、养分、碳等。 研究植被波长范围一般为400 nm to 2500 nm,这也是传感器设计选择波长范围。这个波长范围可范围如下四个部
3、分:可见光(Visible):400 nm to 700 nm近红外(Near-infraredNIR):700 nm to 1300 nm短波红外1(Shortwave infrared 1 SWIR-1):1300 nm to 1900 nm短波红外2(Shortwave infrared 2SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1过渡区(1400nm附近)是大气水强吸取范围,卫星或者航空传感器一般不获取这范围反射值。SWIR-1 和 SWIR-2过渡区(1900nm附近)也是大气水强吸取范围。植被可分为三个部分构成:植物叶片(Plant Foliage
4、)植被冠层(Plant Canopies)非光合作用植被(Non-Photosynthetic Vegetation)这三个部分是植被分析基础,下面对他们详细简介。1.1植物叶片(Plant Foliage)植物叶片包括叶、叶柄以及其他绿色物质,不一样种类叶片具有不一样形状和化学成分。对波谱特性产生重要影响重要化学成分包括:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),这也是遥感反演基础,如用植被指数来估算叶子化学成分。色素(Pigments)叶色素重要包括叶绿素、叶黄素和花青素。这些都是植被健康指标,例如含高浓度叶绿素植被一般很健康,相反,叶黄素和
5、花青素常常出目前健康较差植被,濒临死亡植被出现红色、黄色或棕色。叶色素只影响可见光部分(400nm700nm),图1为几种叶色素在可见光范围相对光谱吸取特性。图1 部分叶色素相对光谱吸取特性水分(Water)叶子几何特性、冠层构造和对水需求影响植被水分含量。水分对植被反射率影响波段范围在NIR和SWIR(图2)。在1400nm和1900nm附近有吸取波谷,不过传感器一般会避开这两个波段范围。在970nm和1190nm附近也有强吸取特性,可运用这两个波段范围监测植被水分。碳(Carbon)植物中碳是以诸多形式存在,包括糖,淀粉,纤维素和木质素等。纤维素和木质素吸取特性表目前短波光谱范围内容(图3
6、)。图2 叶片水和碳(纤维素和木质素)相对光谱吸取特性氮(Nitrogen)叶子中氮元素一般包括在叶绿素、蛋白质以及其他分子中。植被指数(VI)对包括在叶绿素中氮元素很敏感(大约含6氮)。包括在蛋白质中氮元素在1500nm1720 nm范围内对叶片波谱特性影响比较大。从上可以看出,植被与辐射互相作用重要体目前叶片波谱特性,因此,在可见光谱段内,重要太阳辐射吸取来自叶绿素、叶黄素和花青素,形成450nm和670nm附近吸取谷;在近红外谱段内,重要太阳辐射吸取来自水分,形成970nm和1190nm两个水吸取带;在短波红外谱段内,除了水分,多种形式存在碳和氮也对太阳辐射吸取有一定奉献,形成1400n
7、m和1900nm吸取谷。图3是叶片反射率与透射光谱(Transmittance Spectra)对比例子,木本植被和草本植被在色素、水分、氮等含量不一样样,反射率与透射光谱关系也不一样样。图3木本植物(A)和草本植物(B)叶片反射率与透射光谱1.2植被冠层(Plant Canopies)单片叶子反射特性对植被冠层光谱特性是重要,此外,叶子数量和冠层构造对植被冠层散射、吸取也有重要影响。例如不一样生态系统中,森林、草原、或农业用地等都具有不一样反射特性,虽然它们单个叶子很类似。 有诸多植被模型用于描述冠层光谱特性。两个最重要是叶面积指数(LAI)和叶倾叶角分布(LAD)。LAI指每单位面积地上绿
8、叶面积,这体现了冠层中绿色植被总数;LAD描述了树叶所有类型定向,常用平均叶倾角(MLA)近似。MLA表达冠层中每个叶片角度与水平方向差值平均值。图4表达LAI和LAD对植被冠层影响效果,MLA近似LAD。在近红外谱段内,植被强反射太阳辐射,植被冠层在可见光和SWIR-2是强吸取。使用可见光和SWIR-2植被指数对上层林冠非常敏感。图4LAI (A) 和MLA (B) 增减对植被冠层影响1.3非光合作用植被(Non-Photosynthetic Vegetation)在自然界里,还包括占了全球植被覆盖二分之一衰老或死亡植被,它们被称为非光合作用植被(简称NPV)。NPV冠层也具有木本森林构造,
9、如树干,茎,和树枝等。NPV重要包括碳元素,以淀粉,纤维素和木质素形式存在,NPV光谱特性重要受这些物质支配。在短波红外内波动比较大,与绿色植被相反,SWIR-1 和SWIR-2范围内散射占主导。图5显示了绿色植被和NPV冠层光谱特性。图5 透射绿色植被和干植被冠层反射特性变化(400nm2500nm)2.植被指数植被指数(VI)是两个或多种波长范围内地物反射率组合运算,以增强植被某一特性或者细节。所有植被指数规定从高精度多光谱或者高光谱反射率数据中计算。未通过大气校正辐射亮度或者无量纲DN值数据不适合计算植被指数。下面是7大类27种植被指数阐明,这些植被指数都是通过严格生物条件下测试。2.1
10、宽带绿度Broadband Greenness (5种)宽带绿度指数可以简朴度量绿色植被数量和生长状况,它对植物叶绿素含量、叶子表面冠层、冠层构造比较敏感,这些都是植被光合作用重要物质,与光合有效辐射(fAPAR)也有关系。宽带绿度指数常用于植被物候发育研究,土地运用和气候影响评估,植被生产力建模等。宽带绿度指数选择波段范围在可见光和近红外,一般多光谱都包括这些波段。下面公式中规定波段中心波长:NIR = 800 nm,RED = 680 nm,BLUE = 450 nm。表1 宽带绿度指数1)归一化植被指数(Normalized Difference Vegetation IndexNDVI
11、)NDVI众所周知一种植被指数,在LAI值很高,即植被茂密时其敏捷度会减少。其计算公式为:NDVI=(式1)值范围是-11,一般绿色植被区范围是0.20.8。2)比值植被指数(Simple Ratio IndexSR)SR指数也是众所周知一种植被指数,在LAI值很高,即植被茂密时其敏捷度会减少。其计算公式为:SR=(式2)值范围是030+,一般绿色植被区范围是28。3)增强植被指数(Enhanced Vegetation IndexEVI)EVI通过加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射影响。EVI常用于LAI值高,即植被茂密区。其计算公式为:EVI=(式3)值范围是-11,一般
12、绿色植被区范围是0.20.8。4)大气阻抗植被指数(Atmospherically Resistant Vegetation IndexARVI)ARVI是NDVI改善,它使用蓝色波段矫正大气散射影响(如气溶胶),ARVI常用于大气气溶胶浓度很高区域,如烟尘污染热带地区或原始刀耕火种地区。其计算公式为:EVI=(式4)值范围是-11,一般绿色植被区范围是0.20.8。5)绿度总和指数(Sum Green IndexSG)SG指数是用于探测绿色植被变化最简朴植被指数。由于在可见光范围内,绿色植被对光强吸取,SG指数对稀疏植被小变化非常敏感。SG指数是500 nm 600 nm范围内平均波谱反射率
13、。总和最终会被转化回反射率。值范围是050+,一般植被区域是1025。2.2窄带绿度Narrowband Greenness (7种)窄带绿度指数对叶绿素含量、叶子表面冠层、叶聚丛、冠层构造非常敏感。它使用了红色与近红外区域部分红边,红边是介于690 nm 740 nm之间区域,包括吸取与散射。它比宽带绿度指数愈加敏捷,尤其是对于茂密植被。表2窄带绿度指数1)红边归一化植被指数(Red Edge Normalized Difference Vegetation IndexNDVI 705)NDVI 705是NDVI改善型,它对叶冠层微小变化、林窗片断和衰老非常敏捷。它可用于精细农业、森林监测、
14、植被胁迫性探测等。其计算公式为7 8:NDVI705=(式5)值范围是-11,一般绿色植被区范围是0.20.9。2)改善红边比值植被指数(Modified Red Edge Simple Ratio IndexmSR 705)mSR 705改正了叶片镜面反射效应,可它可用于精细农业、森林监测、植被胁迫性探测等。其计算公式为6:mSR705=(式6)值范围是030,一般绿色植被区范围是28。3)改善红边归一化植被指数(Modified Red Edge Normalized Difference Vegetation IndexmNDVI 705)mNDVI 705是NDVI 705改善型,它考
15、虑了叶片镜面反射效应。它对叶冠层微小变化、林窗片断和衰老非常敏捷。它可用于精细农业、森林监测、植被胁迫性探测等。其计算公式为:mNDVI705=(式7)值范围是-11,一般绿色植被区范围是0.20.7。4)Vogelmann 红边指数1(Vogelmann Red Edge Index 1VOG1)VOG1指数对叶绿素浓度、叶冠层和水分含量综合非常敏感。它可应用于植物物候变化研究、精细农业和植被生产力建模。其计算公式为:VOG1=(式8)值范围是020,一般绿色植被区范围是48。5)Vogelmann 红边指数2(Vogelmann Red Edge Index 2VOG2)VOG2指数对叶绿
16、素浓度、叶冠层和水分含量综合非常敏感。它可应用于植物物候变化研究、精细农业和植被生产力建模。其计算公式为:VOG2=(式9)值范围是020,一般绿色植被区范围是48。6)Vogelmann 红边指数3(Vogelmann Red Edge Index 3VOG3)VOG3指数对叶绿素浓度、叶冠层和水分含量综合非常敏感。它可应用于植物物候变化研究、精细农业和植被生产力建模。其计算公式为:VOG3=(式10)值范围是020,一般绿色植被区范围是48。7)红边位置指数(Red Edge Position IndexREP)REP指数对植被叶绿素浓度变化、叶绿素浓度增长使得吸取特性变宽及红边向长波段方
17、向移动非常敏感。红边位置在690 nm 740 nm范围内急剧倾斜波长范围,一般植被在700nm730nm。REP指数成果输出是在0.69微米0.74微米光谱范围内,植被红边区域内反射率最大导数波长。常用于农作物监测和估产,生态系统干扰探测,光合作用模型,和由气候或其他原因产生冠层胁迫性。2.3光运用率Light Use Efficiency (3种)光运用率指数是用来度量植被在光合作用中对入射光运用效率。光运用效率直接与碳吸取效率、植被生长速度和光合有效辐射(fAPAR)有很大关系。表3光运用率指数1)光化学植被指数(Photochemical Reflectance IndexPRI)PR
18、I对活植物类胡萝卜素(尤其黄色色素)变化非常敏感,类胡萝卜素可标识光合作用光运用率,或者碳吸取效率。可用于研究植被生产力和胁迫性,常绿灌木植被健康,森林以及农作物衰老。其计算公式为:PRI=(式11)值范围是-11,一般绿色植被区范围是-0.20.2。2)构造不敏感色素指数(Structure Insensitive Pigment IndexSIPI)SIPI用来最大程度地提高类胡萝卜素(例如-胡萝卜素和-胡萝卜素)与叶绿素比率在冠层构造(如叶面积指数)减少时敏感度,SIPI增长标识冠层胁迫性增长。可用于植被健康监测、植物生理胁迫性检测和作物生产和产量分析。其计算公式为:SIPI=(式12)
19、值范围是02,一般绿色植被区范围是0.81.8。3)红绿比值指数(Red Green Ratio IndexRG)RG比值指数指示由于花青素替代叶绿素而引起叶片变红有关体现式。可估算植被冠层发展过程,它还是叶片生产力与胁迫性指示器,甚至可标识某些冠层开花。应用于植物生长周期(物候)研究,冠层胁迫性检测和作物估产。 RG比值指数成果输出是红色范围内所有波段均值除以与绿色范围内所有波段均值。值范围是0.18,一般绿色植被区范围是0.73。2.4冠层氮Canopy Nitrogen (1种)冠层氮指数提供一种用遥感度量氮浓度措施。氮是叶绿素重要构成部分,具有高浓度氮植被生长速度较快,冠层氮指数使用短
20、波红外测量植被冠层中氮相对含量。归一化氮指数(Normalized Difference Nitrogen IndexNDNI)NDNI是用于估算植被冠层中氮相对含量。在1510nm反射率重要取决于叶片氮含量,以及冠层总体叶生物量。结合叶片氮含量和冠层叶生物量在1520nm范围内预测叶片氮含量,在1680nm波长范围作为参照反射率,冠层叶生物量这个波长范围具有与1520nm波长范围类似反射特性,并且1680nm波长范围内没有氮吸取影响。NDNI在植被还是绿色以及覆盖浓密时候,对氮含量变化非常敏感,它用于精细农业、生态系统分析和森林管理。其计算公式为:NDNI=(式13)值范围是01,一般绿色植
21、被区范围是0.020.1。2.5干旱或碳衰减Dry or Senescent Carbon (3种)干旱或碳衰减指数是用来估算纤维素和木质素干燥状态碳含量。干碳分子大量存在于木质材料和衰老、死亡、或休眠植被,可以使用这些指数可以做植被着火性分析和检测森林枯枝落叶层。干旱或碳衰减指数是基于纤维素和木质素在短波红外波段吸取特性而计算。表4干旱或碳衰减指数1)归一化木质素指数(Normalized Difference Lignin IndexNDLI)NDLI是用来估算植被冠层木质素相对含量,应用生态系统分析和检测森林枯枝落叶层。其计算公式为:NDLI=(式14)值范围是01,一般绿色植被区范围是
22、0.0050.05。2)纤维素吸取指数(Cellulose Absorption IndexCAI)CAI可以指示地表具有干燥植被,纤维素在 nm 2200 nm范围内吸取特性非常敏感。应用于农作物残留监测,植物冠层衰老,生态系统中着火条件和放牧管理。其计算公式为:NDLI=(式15)值范围是-34+,一般绿色植被区范围是-24。3)植被衰减指数(Plant Senescence Reflectance IndexPSRI)PSRI用来最大程度地提高类胡萝卜素(例如-胡萝卜素和-胡萝卜素)与叶绿素比率敏捷度,PSRI增长预示冠层胁迫性增长、植被衰老开始和植物果实成熟。可用于植被健康监测、植物生
23、理胁迫性检测和作物生产和产量分析。其计算公式为:PSRI=(式16)值范围是-11,一般绿色植被区范围是-0.10.2。2.6叶色素Leaf Pigments (4种)叶色素指数用于度量植被中与胁迫性有关色素。胁迫性有关色素包括类胡萝卜素和花青素,这些色素大量存在衰减植被中,这些指数不能度量叶绿素。叶色素指数应用于农作物监测、生态系统研究、冠层胁迫性分析和精细农业。叶色素指数规定反射率数据范围在01。表5叶色素指数1)类胡萝卜素反射指数1(Carotenoid Reflectance Index 1CRI1)CRI1对叶片中类胡萝卜素非常敏感,高CRI1值意味类胡萝卜素含量相比叶绿素含量多。其
24、计算公式为:CRI1=(式17)值范围是015+,一般绿色植被区范围是112。2)类胡萝卜素反射指数2(Carotenoid Reflectance Index 2CRI2)CRI2是CRI1改善型,在类胡萝卜素浓度高时愈加有效,高CRI2值意味类胡萝卜素含量相比叶绿素含量多。其计算公式为:CRI2=(式18)值范围是015+,一般绿色植被区范围是111。3)花青素反射指数1(Anthocyanin Reflectance Index 1ARI1)ARI1对叶片中花青素非常敏感,ARI1值越大表明植被冠层增长或者死亡。其计算公式为:ARI1=(式19)值范围是00.2+,一般绿色植被区范围是0
25、.0010.1。4)花青素反射指数2(Anthocyanin Reflectance Index 2ARI2)ARI2对叶片中花青素非常敏感,ARI2值越大表明植被冠层增长或者死亡。ARI2 是ARI1改善,当花青素浓度高时愈加有效。其计算公式为:ARI2=(式20)值范围是00.2+,一般绿色植被区范围是0.0010.1。2.7冠层水分含量Canopy Water Content (4种)冠层水分含量指数用于度量植被冠层中水分含量。水分含量是一种重要植物指标,较高水含量表明健康植被、生长快及不易着火。冠层水分含量指数基于水在近红外和短波红外范围内吸取特性,以及光在近红外范围穿透性,综合起来度
26、量总水柱含量。表6冠层水分含量指数1)水波段指数(Water Band IndexWBI)WBI对冠层水分状态变化非常敏感,伴随植被冠层水分增长,970nm附近吸取强度相比900nm处有所增强。应用包括冠层胁迫性分析,生产力预测与建模,着火威胁条件分析,农作物管理,以及生态系统生理机能研究。其计算公式为:WBI=(式21)一般绿色植被区范围是0.81.2。2)归一化水指数(Normalized Difference Water IndexNDWI)NDWI对冠层水分含量变化非常敏感,由于在857 nm 和 1241 nm具有相似反射率,不过又不一样于液态水吸取特性。应用于冠层胁迫性分析,在浓密
27、叶型植被叶面积指数研究,植被生产力模型,着火性研究。其计算公式为:NDWI=(式22)值范围是-11,一般绿色植被区范围是-0.10.4。3)水分胁迫指数(Moisture Stress IndexMSI)MSI对叶片水分含量增长非常敏感。当叶片水分含量增长,在1599nm处吸取强度也增长,而在819nm处吸取强度没有影响。应用于冠层胁迫性分析,生产力预测与建模,着火威胁条件分析,以及生态系统生理机能研究。与其他水指数相反,MSI值越大,水分胁迫性越严重和水分含量越少。其计算公式为:MSI=(式23)值范围是03+,一般绿色植被区范围是0.42。4)归一化红外指数(Normalized Dif
28、ference Infrared IndexNDII)NDII对农作物冠层水分含量变化非常敏感,NDII值越大表达水分含量越多。应用于农作物管理,森林冠层监测,植被胁迫性探测。其计算公式为:NDII=(式24)值范围是-11,一般绿色植被区范围是0.020.6。3.环境小卫星高光谱成像仪植被指数计算环境与灾害监测预报小卫星星座A、B星(HJ-1A /1B星)于9月6日上午11点25提成功发射,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B星搭载了CCD相机和红外相机(IRS)。在HJ-1-A卫星装载有一台超光谱成像仪,完毕对地刈宽为50公里、地面像元辨别率为100米、11
29、0128个光谱谱段推扫成像,回访周期约为96h。该数据可免费下载:。ENVI提供植被指数计算器,包括了上述27种植被指数。它可以根据输入图像波段状况,自动从27种中列出能计算植被指数。并提供了还提供了生物物理学交叉检查功能,可以提高植被指数计算精度。我们使用HJ-1-A-HIS数据包括115个波段,波长覆盖459.00 956.00 nm,图像以HDF5格式储存, HDF5图像格式中除了图像文献外,还包括了中心波长、定标文献、成像参数等信息。下面我们试验在ENVI中能计算几种植被指数。直接运用ENVI_HJ1A1B_Tools环境卫星数据读取扩展工具读取HSI数据。(扩展工具下载地址:http
30、:/bbs.esrichina-(1)在ENVI主菜单中,选择SpectralVegetation AnalysisVegetation Index Calculator,在数据输入对话框中选择HJ-1-A-HSI反射率数据。单击OK,打开Vegetation Indices Parameters面板(图6)。(2)在Vegetation Indices Parameters面板中,“Select Vegetation Indices”列表中显示这个数据可以计算16种植被指数。(3)生物物理学交叉检查功能(Biophysical Cross Checking): On:执行此功能(默认)。当植
31、被指数值发生冲突时,这些值会被忽视。 Off:不执行此功能。注:假如要将计算得到植被指数用于植被分析工具(vegetation analysis tools),则要选择Off。(4)选择输出途径及文献名,单击OK按钮执行植被指数计算。图6 能获取16种植被指数这16中植被指数涵盖了宽带绿度类指数、窄带绿度类指数、光运用率类指数、干旱或碳衰减类指数、叶色素类指数。由于缺乏中远红外波段,冠层水分含量类指数未能获取。但这不影响环境小卫星高光谱数据在植被领域运用。 值注意是,由于阴影区域没有足够光能量,阴影区域植被指数往往是不精确,需要将阴影区进行掩膜。4.总结通过植被光谱特性,我们可以分析并得到某些使用性很高植被指数。这些植被指数分别对植被叶绿素含量、冠层氮含量、叶色素、冠层水分含量、碳含量等非常敏感,对于植被参数反演具有一定参照作用。同步我们也看到环境小卫星高光谱数据对植被绿度、光运用率、干旱或碳衰减以及叶色素还是有一定敏感度,这对于研究植被提供了一种非常好数据源,并且它还是免费提供。