收藏 分销(赏)

深基坑工程.doc

上传人:精*** 文档编号:3898964 上传时间:2024-07-23 格式:DOC 页数:46 大小:175.04KB
下载 相关 举报
深基坑工程.doc_第1页
第1页 / 共46页
深基坑工程.doc_第2页
第2页 / 共46页
深基坑工程.doc_第3页
第3页 / 共46页
深基坑工程.doc_第4页
第4页 / 共46页
深基坑工程.doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

1、6 深基坑工程基坑工程是在高层建筑大量发展,充足运用城市地下空间,采用各种形式支护结构,深挖土方而形成的一种地下空间结构。当前城市建设迫切需要建设地下空间,但是地基的稳定性,支护结构的内力和变形,以及地层的位移,对周边建筑物、地下管线的保护计算分析等,目前还得不出定量结果。有关地基稳定及变形理论对解决实际问题仍具有指导意义,故在工程实践中较多采用理论导向、量测定量和经验判断三者相结合的方法。由于全国各地地质不同,结识也各异,有各自的设计、施工及测试经验和工程实例。也有很多工程导致质量事故,且事故性质反复而相同。现国家标淮建筑基坑文护技术规程(JGJ120-99)、建筑地基基础工程施工质量验收规

2、范(GB502022023)已经颁发执行,此后质量事故可望减少。规范是在已经成熟的理论和实践的基础上制定的,但有些理论尚有待完善,软土地区的规定尚待补充,规范规定尚有待技术人员认真贯彻执行。为防止质量事故的反复发生,根据近10数年来国内基坑工程中所发生的结构倒塌、道路管线坍陷、邻近建筑物损坏等事故约200个实例中,选出事故相同的一些工程,提出防治方法,以便读者对基坑工程的质量事故及防治方法有所了解和依据。 1基坑工程涉及下列内容:(1) (1) 围护结构:钻孔灌注桩、挖孔桩、预制钢筋混凝土板桩、方桩、钢板桩、H型钢桩、地下连续墙、水泥土墙及土钉墙等。(2) (2) 拉结与支撑结构:土层锚杆、钢

3、支撑、钢筋混凝土支撑、钢筋混凝土水平框架、钢立柱、钢筋混凝土立柱等。 (3)地下水控制:深层水泥土搅拌截水帐幕、高压注浆桩截水帐幕、降水排水与回灌。 (4)围护结构、支撑与土体及截水帐幕组成的地下空间结构,如图6l所示。这些组成内容中的任何一个环节发生质量问题,将导致整个基坑工程破坏。 2基坑工程发生质量事故的特殊要点: (1)截水帐幕如深层搅拌桩墙、高压注浆桩帐幕,若设计、施工不良,将产生漏水、涌砂,导致工程坍塌。 (2)地下管线、水池、化粪池等漏水,将促使土的物理参数指标改变,影响土压力变化,导致产生事故。 (3)积极土压力与被动土压力的大小与土的物理参数有关,且与位移大小和方向有关。 (

4、4)被动土区的土抗力局限性时,将引起基坑底隆起发生整体滑移。(5)排桩或地下连续墙的嵌固埋深(坑下深度)局限性,当悬臂时将导致围护结构倒塌,当有支撑时将导致土体失稳或整体滑移。(6)支撑系统如节点、立柱、斜撑等质量事故,将导致支撑系统失稳,导致基坑工程破坏。(7)锚杆拉接系统由于锚固段长度局限性,使角不合适,或锚体与土体极限摩阻力局限性,则土层锚杆将从土体中拔出,导致桩、墙倒塌。 3基坑工程、设计、施工注意事项:(1) (1) 基坑工程设计时要调查场地内外管线情况,周边环境。有无上下水管线、化粪池、水池等漏水情况,以便考虑采用土的物理指标参数。 (2)在软土地区要考虑土的渗流压力,丰水区要考虑

5、浮力。 (3)截水帐幕的厚度与深度应按建筑基坑支护技术规程(JGJ 12099)第841条及413条核算,施工应按建筑地基基础工程施工质量验收规范有关规定执行。 (4)排桩、地下连续墙的埋深应按规范规定计算,软土地区应按抗渗流稳定公式核算。 (5)软土地区被动土区抗力局限性时,应加深嵌固深度或采用深层搅拌水泥土或其他方法加固被动土区。(6)钢支撑体系要采用预加应力。钢筋混凝土支撑体系在设计时要考虑收缩及温度应力,要考虑立柱隆起和沉降对支撑的轴力改变,经测试立柱沉降23cm会使轴力增长一倍,因此钢筋混凝土支撑设计安全系数应为2以上。(7)土层锚杆在设计时按公式计算的长度或以规范规定的极限摩阻力标

6、准值计算的锚固段,可作为预估依据(估算、备料等根据)。但在实际施工前必须作锚杆的基本实验,即锚杆与土体的极限摩阻力实验,根据实验得出的数据,修改原设计锚固段长度,使符合实际情况。 (8)基坑工程稳定性验算: 1)墙的稳定性采用圆弧滑动法核算; 2)基坑底面的稳定性,涉及隆起、管涌、抗渗和浮起的稳定采用有关规定验算。(9)施工过程中必须进行监测工作,一般规定:量测排桩、墙的水平位移和垂直位移,文撑围檩的位移变形,立柱的隆起和沉降,锚杆的变形与应力及地下水情况等,量测发现异常情况,立即研究采用措施,可以避免重大事故的发生。 (10)基坑工程以外的一些有关质量通病的防治,可参见本书其他有关章节。61

7、 排桩、地下连续墙支护 611 悬壁式排桩、地下连续墙嵌固深度局限性 1现象基坑挖土分两步挖,当第二步挖到将近坑底时发现桩倾侧,桩后裂缝,坑上地面也产生裂缝,附近道路下沉,邻近房屋出现竖向裂缝,不久,排桩倒塌,连接圈梁折断,桩后土方滑移入基坑内,基坑支护破坏。 2,因素分析悬臂桩的埋深嵌固只有悬臂长的1/31/2,嵌固局限性,嵌因深度未通过计算拟定;另一方面是水管下水道、化粪池漏水,使土的物理参数改变,尚有的工程,一场大雨导致排桩倒塌,使土的r、及c值发生变化,促使基坑工程坍塌。 3防治措施 悬臂桩的嵌固深度必须通过计算拟定,计算应考虑土的物理参数因素,按本节附录中的公式计算。不按土的物理参数

8、的具体情况计算拟定的嵌固深度,或按经验拟定的嵌固深度必将产生重大事故。612 锤击式悬臂桩(预制桩、锤击沉管桩)位移太大,有的桩上部折断 1现象在软土淤泥质土地区工程桩采用450mm450mm锤击预制桩或采用500锤击沉管桩(配筋818),为施工方便,将支护桩采用与工程桩相同的配筋与桩径,用锤击桩为挡土桩。基坑开挖土方时并将土方堆积在坑旁边,基坑开挖后发现桩位移,最大位移达115m,有的桩在地面下35m处折断。 2因素分析(1) (1) 悬臂式挡土桩的直径按规范规定不得小于600(配筋不得小于20)。与工程桩不同,悬臂式挡土桩重要承受水平力,同时在坑边堆土,促使增大侧壁水平压力,因而有的桩在抗

9、弯不足情况下折断。 (2)在软土淤泥质土中已经锤击密布工程桩(34d),锤击数又多,地基土中静孔隙水压力急剧上升,且无法不久消散,地基中产生强烈挤土作用,工程桩也会产生大的位移,支护挡土桩又系外排桩,因而位移很大。 3防治措施(1) (1) 支护挡土桩应用600或大于600的灌注桩,不用锤击450mm450mm的预制桩,或500的锤击沉管桩,因其抗弯性能局限性。 (2)基坑挖土应随挖随运,不得堆在坑旁,以免增长支护桩的水平压力。 613钢板桩渗漏 钢板桩是由带锁口或钳口的热轧型钢制成,将单块钢板桩互相连接就形成钢板桩墙,在基坑工程中用以挡水和挡土。 我国常用的拉森式钢板桩,如图6-2所示。 在

10、软土地区基坑深在5m以上时,必须采用拉结方式,悬臂式桩只能用于5m以下(按规范规定)。 钢板桩施工,先安装围檩,分片将钢板桩打入土中,筑成封闭式围圈,然后在圈内挖土。围檩及钢板桩施工立面如图6-3所示。 1现象 基坑挖土过半时,发现钢板桩渗漏,重要在接缝处和转角处,有的地方还涌砂。 2因素分析(1)钢板桩旧桩较多,使用前禾进行矫正修理或检修不彻底,锁口处咬合不好,以致接缝处易漏水。转角处为实现封闭合拢,应有特殊型式的转角桩,这种转角桩要通过切断焊接工序,也许会产生变形 (2)打设钢板桩时,两块板桩的锁口也许插对不严密,不符合规定。 (3)桩的垂直度不符合规定,导致锁口漏水。 3防止措施(1)

11、(1) 旧钢板桩在打设前需进行整修矫正。矫正要在平台上进行,对弯曲变形的钢板桩可用油压千斤顶顶压或火烘等方法矫正。 (2)作好围擦支架,以保证钢板桩垂直打入和打入后的钢板桩墙面平直。 (3)防止钢板桩锁口中心线位移,可在打桩进行方向的钢板桩锁口处设卡板,阻止板桩位移。 (4)为保证钢板桩垂直用2台经纬仪从两个方向控制锤击人土。(5)由于钢板桩打入时倾斜,且锁口接合部有空隙,封闭合拢比较困难。解决的办法一是用异形板桩(此法较困难);二是采用轴线封闭法,此法较为方便。4治理方法采用水玻璃水泥浆以阀管双液灌浆系统施工堵漏。 614 钢板桩倾侧,墓坑底土隆起,地面裂缝 l现象采用拉森钢板桩,开挖土方的

12、挖土机及运土车设在地面钢板桩侧,开挖不久即发现钢板桩顶侧倾,坑底土隆起,地面裂缝并下沉。其中有1例整排桩呈弧形推向坑内方向,中间最大偏移3m,地面呈弧形,裂缝宽20cm,地面下沉约1m。 2因素分析 (1)这些钢板桩施工都在软土地区,设计的嵌固深度不够,因而桩后地面下沉,坑底土隆起是管涌现象。 (2)挖土作业时挖土机及运土车在钢板桩侧,增长土的地面荷载,导致桩顶侧移。(3)从上述1例作实测分析认为:土体已形成两个圆弧滑裂面,一个是深约56m的圆弧滑裂面,使地面形成直径为18m的弧形滑裂圈;另一个是圆心向坑外移,深约10m的圆弧形滑裂面,在地面上形成直径为30m的弧形滑裂圈,随着两次圆弧滑动,使

13、钢板桩同时位移和倾斜,当钢板桩拔出观测时,桩未弯曲,桩尖最大推移量约525cm。实测说明钢板桩没有满足以圆弧形滑动的嵌固深度,并且整体稳定性不合格。 3防治措施 (1)钢板桩嵌固深度必须由计算拟定,详见本节附录。(2)挖土机、运土车不得在基坑边作业,如必须施工,则应将该项荷载增长计算入设计小,以增长桩的嵌固深度。 (3)钢板桩设计时尚须考虑地基整体稳定。 615 连拱式灌注桩大桩倒塌、折断 连拱式灌注桩是排桩支护的一种发展,它是由大桩和小桩共同组成一个组合拱截面的组合截面桩,如图6-4所示。 图中大桩间距L为30005000mm,拱矢高f为1/41/2L,大桩直径大于1000,小桩直径约300

14、mm左右。连拱式灌注桩支护结构的工作原理是将垂直于拱截面的水、土压力产生的弯拉力,转化为沿拱轴截面方向的轴压力,因而沿拱轴的小桩可做成素混凝土,让其受压,而作为拱脚的大桩仍应是钢筋混凝土桩承受弯拉力,如此可以承受较大的悬臂并节约较多(约47)的资金。1 1 现象 在基坑挖土将到设计标高时,支护拱圈忽然倒塌,拱脚大桩折断。 2因素分析设计方案错误地认为大小桩组成拱截面,可以个加钢筋所有让素混凝土来承受。但该技术仅系小桩承受拱轴方向传末的压力,大桩仍需用钢筋混凝土承受拉、弯力。该工程的桩折断、支护倒塌完全由于大桩中没有钢筋,承受不了弯矩所致。 3,防治措施 (1)采用连拱式灌注桩支护结构,月仍应看

15、作竖向为一悬臂式结构,其竖向长度、嵌固深度、最大弯矩、整体稳定、位移等的计算与一般悬臂支护结构相同。水平向则取一构造单元,如图6-4中的一个L间距为计算单元,并将小圆桩组成不规则截面换算成相同截面积的等厚度连续板拱截面来计算。因大桩承受弯矩、位移、稳定性的需要,故必须配置钢筋。 (2)为了避免质量事故再发生,建议采用连拱式灌注桩设计时可参考南京民用建筑设计院陈德文连拱式基坑支护结构设计一文中的计算方法,该文刊于宇航出版社1994年出版的高层建筑地下结构及基坑支护一书中。616 地下连续墙接头漏水涌砂 地下连续墙具有抗渗、挡土和承重功能,它是基坑工程中最佳支护结构之一。由于施工工艺按槽段施工的规

16、定,必须有接头节点,各种形式的接头在实践中产生,最重要的是规定接头节点抗渗性能好,地下连续墙整体性能好。最初施工采用的接头是圆管接头,如图6-5所示,后改用钢板接头,如图6-6所示。现将这两种接头发生的质量问题、因素及改善措施述之如后。地下连续墙的一般质量通病详见本手册第10章地下连续墙工程。 1,现象基坑开挖过程发现不同槽段接头、不同高度处渗水,光是浑浊泥浆水,然后大量中砂、细砂涌进坑内,接头地面(墙顶面)下陷,逐渐向深度及广度扩展,坑内堆积泥砂和积水。 2因素分析圆形接头管接头在圆管抽出后,形成半圆接头,如65(e)所示,接头管以钢管作成,拔山后形成光滑圆弧面,易与边槽段混凝土接触面形成缝

17、通道,导致漏水,在基坑挖土后,地下连续墙的墙背受土压力、水压力的作用,管接头易形成活铰,而位墙体位移,整体性能差,还易使接头缝漏水。因此接头管接头虽施工简易,但整体性能和防渗性能差的缺陷不易克服。经改为钢板接头如图6-6(g),拔出U形接头管后的封头钢板4的面层必须将泥砂清理干净,否则在邻槽段施工后,两槽段之间有夹泥,随着基坑开挖,在墙背水、土压力作用下,泥被冲散而形成水流通道,这就是钢板接头漏水涌砂的重要因素。另一方面由于这种钢板接头规定严格,钢筋笼长度、槽深(一般20m左右)的偏差,当混凝土浇完拔出接头箱、U形接头(图6-6f、g)时,会将夹泥带砂包留在槽边,当第二槽段用冲击钻头施工时,很

18、难消除槽边的泥和砂包,这就导致了槽段间夹泥及砂包。在基坑开挖时导致槽段间的泥砂通道,因而漏水、涌砂。 3防止措施 (1)封头钢板上的泥砂必须清理干净。(2)槽段挖深及钢筋笼前作长度的垂直误差须在规定以内,注意起吊接头箱及U形接头,避免泥砂留在槽段缝处。 4治理办法(1) (1) 已经出现的渗水涌砂部分可采用快速堵漏方法用水玻璃水泥堵漏。在渗水涌砂较严重部分,应在墙后用高压注浆方法在一定宽、深部范围内注浆。 (2)改善接头管、接头箱方法。上海金茂大厦地上88层地下3层,地下连续墙深、36m,槽段接头采用凹凸形楔形接头,该接头使平面外抗剪能力有较大提高,渗流途径长,折点多,抗渗性能好,施工难度较小

19、,操作较易保证质量。但必须保证接头清洗效果,设计制作楔形刷反复洗刷楔形接头,不让泥土砂粒留在楔形接头上,如图6-7所示。接头箱用油压千斤顶及油泵,在混凝土初凝后逐渐顶拔出。改善的槽段接头,成功地提高了抗渗能力,加强了墙的抗剪强度。附录 排桩支护质量标准排桩支护施工质量标难参见第9章附录“钢筋混凝土预制桩与钢桩施工质量标准”。附录 地下连续墒质量检查标准参见第10章附录“地下连续墙质量标准及检查方法”。附录 关于排桩、地下连续境的水平荷载、水平抗力及桩、墙嵌固深度的计算 (摘自建筑基坑支护技术规程JGJ120-99) 1支护结构水平荷载标准值eajk可按下列规定计算(参照附图6-1)。 (1)对

20、于碎石土及砂土 1)当计算点在地下水位以上时: eajk=ajkKai-2cikKa 2)当计算点位于地下水位以下时: eajk=ajkKai-2cikKa+(zj-hwa)-(mj-hwa)waKaiw式中 Ka第i层的积极土压力系数,按Ka=tan2(45o-ik/2)计算i层土压力系数; ajk作用于深度zj处的竖向应力标准值(kPa); cik三轴实验拟定的第i层土因结不排水(快)剪粘聚力标准值(kPa); zj计算点深度(m); mj计算参数,当zjh时,取zj,当zjh时,取h; hwa基坑外侧水位深度(m); wa计算系数,当hwah时取l,当hwah时,取零; w水的重度(kN

21、/m3。 (2)对于粉土及粘性土 eajk =ajkKai-2cikK 当按以上规定计算的基坑开挖面以上水平荷载标淮值小于零时,应取零。 2基坑外侧竖向应力标准值ajk计算: ajk =rk+0k+1k (1)计算点深度zj处自重应力rk 1)计算点位于基坑开挖面以上时: rk =mjzj式中 mj深度zj以上土的加权平均天然重度 (kN/m3)。 2)计算点位于基坑开挖面以下时: rk =minh式中 min开挖面以下土的加权平均天然重度(kN/m3)。 (2)当支护结构外侧地面满布附加荷载q0 时(见附图6-2),基坑外侧任意深度附加竖向应力标准值0k可按下式拟定: 0k = q0式中 q

22、0地面均布荷载(kN /m2)。 (3)当距支护结构b1外侧,地表作用有宽度b0的条形附加荷载q1时,见附图6-3,基坑外侧深度CD范围内的附加竖向应力标准值1k按下列式拟定: 1k= q1 b0 / b0 +2b 见附图6-3所示。 (4)上述基坑外侧附加荷载作用于地表以下一定深度时,将计算点深度相应下移,其竖向应力也可按上述规定拟定。 3水平抗力标准值计算: 参照附图6-4水平抗力标准值计算图。 (1)对砂土及碎石土,基坑内侧抗力标准值: epjk=pjkKpi+2cikKpi+(zj-hwp)(1-Kpi)w式中 pjk作用于基坑底面以下深度zj处的竖向应力标准值(kPa); Kpi第i

23、层土的被动土压力系数。 (2)对粉土及粘性土,基坑内侧水平抗力标准值: epjk =pjkKpi+2cjkKpi (3)作用于基坑底面以下深度zj处的竖向应力标准值 pjk=mjzj式中 mj深度zj以上土的加权平均天 然重度(Kn/m3)。 (4)第i层土的被动土压力系数: Kpi=tan2(45o+ik/2) 4悬臂式排桩、地下连续墙嵌固深度计算参照附图6-5所示。 嵌因深度设计值hd按下列规定拟定: hpEpj-1.20haEai0 式中 Epj桩、墙底以上根据本附录3 拟定的基坑内侧各土层水平 抗力标准值epjk的合力之和; hp合力量Epj作用点至桩、墙底的距离;Eai桩、墙底以上根

24、据本附录12拟定的基坑外侧各土层水平荷载标准值epjk 的合力之和; ha合力Eai作用点至桩、墙底距离; 0建筑基坑侧壁重要性系数,按安全等级,一级0=11,二级0=10, 三级0=09。62 预应力土层锚杆与支护预应力土层锚杆是一种新型受拉杆件,它的一端与挡土桩、墙联结,另一端锚固在地基的土层中,以承受桩、墙的土压力、水压力等水平荷载,运用地层的锚固力维持桩、墙的稳定。为不致使桩、墙的位移太大,锚杆在安装后即在锚杆顶部预加应力以使减少变形。 锚杆与桩、墙的联结支护如图68所示,多层锚杆如图6-9。 锚杆的有效锚固长度先由计算得出,然后在工程场地作实地实验得出极限摩阻力后最后拟定。多层锚杆的

25、施工程序为:挖土至第一层锚杆位置下05m,制作第一层锚杆并预加应力,然后再挖土到第二层锚杆位置下05m,作第二层锚杆,如此类推。所有用多层锚杆或多层支撑的基坑支护工程都不能一次挖土到基坑底面。 621 锚杆被拔出,桩折断,排桩倒塌 1现象当挖土到基坑底,发现桩顶部挡土小墙倾侧甚多,顶部地面裂缝并延伸至围墙,旋即排桩倒塌,上部土体滑动,下水道塌陷,水涌入基坑,有的塌至街道,第一层锚杆从土中完全拔出,护坡桩折成三段,折点分别在二、三层锚杆处、折点处混凝土破碎,钢筋弯曲,第二、三层锚杆锚头拉脱,腰梁扭断开裂。 2因素分析(1) (1) 从事故现象看:第一层锚杆被拔出足以说明锚固长度显然不够,开始产生

26、桩顶的大量位移和裂缝并延伸,足以说明其前兆。当第一层锚杆的有效锚固长度不能胜任桩受的水平推力时,锚杆被拔出,此时桩受的水平推力集中到第二层锚杆支点,桩受到过大的不能胜任的弯矩而折断,而锚头拉脱、腰梁扭断、裂开是受到复杂的招矩拉力所致,直至整排桩被巨大力所推倒。(2) (2) 从事故发生后核算中发现,原计算错误在于第一层锚杆间距为2m一根,第二层锚杆间距为15m一根,但计算桩受水平力系按单位长度(1m)计算,因此出现第一层锚团长度差1倍的误差。作为设计计算者必须记住由于一时的疏忽而导致严重的后果。 3防治措施 (1)锚团长度的计算应反复核算,避免错误。 (2)在工程现场必须作测试,以发现计算上也

27、许出现的错误。(3) (3) 从事故发生的情况看,第一层锚杆的锚团长度非常关键。因此认为多层锚杆支护体系的第一层锚扦锚因力特别重要,设计施工者应特别重视。 622 锚杆不起作用,桩折断,支护结构倒塌 1现象基坑较深,采用10m灌注桩、两层锚杆支护。基坑挖到设计标高后不久,发现局部破坏,先是锚杆端部脱落,横梁掉下,桩间土开裂,继而裂缝增大,桩顶地面较远处发生裂缝,最后,桩断、支护结构倒塌,邻近自来水管断裂,基坑受泡,再次塌方,基坑内一片汪洋。 2因素分析锚杆端部脱落,说明预应力张拉后锚头没有错固住,横梁掉下说明这一排锚杆在桩端没有受力,也就是锚杆不起拉结作用,使1m的大直径桩变成悬臂桩,受力后倾

28、侧,桩间土开裂,位移大时桩顶地面开裂并发展较远,最后桩因受弯矩太大而折断。 3防治措施(1) (1) 预应力施工应由有经验技工操作,如无经验,应通过培训并由有经验工人予以指导。当锚头锚住后还应检查横梁(一般为工字钢)是否受力。当发现横梁脱落,应立即停止挖土,研究因素,采用措施,如工地未能采用措施,则倒塌不可避免。 (2)基坑开挖时应作排桩的位移监测,随时可以发现桩有无大的位移,发现后应研究因素,采用措施。623 支护结构倒塌 1现象基坑深16m,密排大直径10m灌注桩,一层锚杆,地面距护坡桩边沿建双层工棚及移动式办公室。施工期间支护桩忽然断裂,排桩倒塌,工棚滑入坑内,导致重大事故。 2因素分析

29、 (1)基坑边沿搭建工棚是重大违规事件,事故因素分析系地面超载,原设计未曾考虑这项外加荷载。 (2)基坑深16m,按该工程地质情况,一层锚杆的方案不安全,再加上超载,导致事故发生。 3防治措施(1) (1) 支护方案决不能在基坑边建设工棚,也不能在坑边堆放如钢筋类重物,必须堆重物或行驶塔吊、汽车吊时,应计算地面超载,以保证安全。(2) (2) 如能在基坑底上5m左右增长一层锚杆,则可增长安全,但也应将超载计算进去,计算锚杆锚固长度,灌注桩配筋、入土长度等。624 锚杆倾角小,锚固力差 1现象锚杆设汁规定极限承载人为500kN,工程现场实验,倾角15o(与水平面的夹角)极限承载力仅为400kN,

30、同样长度改变倾角为25 o后,极限承载力为600kN,满足设计规定。 2因素分析锚杆的承载力与土体的极限摩阻力有关,一般情况下,上层土质较下层土质差,在同样锚固长度情况下,倾角小时锚固体进一步较好土体长度少,如上述实验,锚杆锚团长30m,倾角15 o时,在淤泥质粘土中约为15m,在粉质粘土中约为15m;而改为25 o时,锚固段在淤泥质粘土中约为3m,粉质粘土中约为14m,在粉砂中约为13m,从附表6-1可以看出不同土质的极限摩阻力差别很大。 3防止措施 (1)正式施工锚杆前必须作锚杆基本实验,得出倾角、锚团长度关系,提供设计研究决定。(2)倾角必须适宜,按规范规定:倾角为15 o25 o,不大

31、于45 o。选择合适角度及合适极限承载力是必要的。625 锚县夹片滑脱,失去锚固作用 1现象 锚具在张拉锚固后不久,失起作用,即钢绞线在锚杆桩测试时不起拉结作用。 2因素分析 (1)经锚具、夹片等检查发现夹片硬度局限性HRC=40,不符合规范规定。 (2)当锚杆受力时,夹片对钢绞线因硬度局限性而滑脱,预应力锚固后经不起受力而滑脱。 3防治措施 (1)夹片应采用表面渗碳工艺,提高硬度,使硬度HRC=50o55o。 (2)钱杆施工完后应重新检查锚头有无松动、脱落,必要时重新将锚头张拉一下。 (3)工厂交付锚具、夹片时应作具体检查验收,施工单位对锚具质量应切实负起责任。626 锚杆与地下连续墙预留孔

32、漏水涌砂 1现象 基坑工程在做第二层锚杆施工时,墙外水压力较大,水及砂从预留孔与锚杆钻杆外套管间流入基坑内,施工人员经验局限性时,会将钻杆拔出导致坑内大量涌水涌砂,导致附近变电室房屋开裂等事故。 2因素分析 (1)采用地下连续墙及锚杆支护的工程,一般在地下连续墙施工时,应在墙内一定位置预留孔洞,以便锚杆施工时穿过,如图6-10所示。锚杆外套管与地下墙预埋管之间的空隙导致水流通道,粉砂在水压力作用下涌入坑内。 (2)拔出钻杆导致大量流砂从203孔中流入坑内,导致地面塌陷、房屋开裂。 3防治措施 (1)在孔口设橡皮垫圈,以阻止砂与水涌人坑内,见图6-10所示。 (2)在钻杆钻进时,保持钻头与外套管

33、有一定距离,停钻时缩回外套管内,避免水从套管内进人基坑。 (3)灌注砂浆时保持砂浆压力(0406MPa)。 (4)拔管时留下最后两节外套管,待水泥初凝后拔出。附录 单层锚杆支点计算(摘自建筑基坑支护技术规程JGJ120一99)单层锚杆支点力及嵌固深度如附图6-6及附图6-7所示。 1基坑底面以下文护结构设定弯矩零点位置至基坑底面的距离hc1可按下式拟定(附图6-6):ea1k=ep1k 2支点力Tc1可按下式计算:Tc1=(ha1Eac-hp1Epc)/(hT1+hc1)式中 ea1k水平荷载标准值; ep1k水平抗力标准值; Eac设定弯矩零点位置以上基坑外侧各土层水平荷载标准值的合力之和;

34、 ha1合力Eac作用点至设定弯矩零点的距离; Epc设定弯矩零点位置以上基坑内侧各土层水平抗力标准值的合力之和; hp1合力Epc作用点至设定弯矩零点的距离; hT1支点至基坑底面的距离; hc1基坑底面至设定弯矩零点位置的距离。 3嵌固深度设计值hd可按下式拟定(见附图6-7):hpEpj+Tc1(hT1+hd)-1.20haEai0附录 锚杆施工质量标准 钱杆施工质量应符合下列规定。 1注浆管宜与锚杆体绑扎在一起,一次注浆管距孔底宜为100200mm,二次注浆管的出浆孔应进行可灌密封解决。2浆体应按设计配制,一次灌浆宜选用灰砂比1:11:2,水灰比038045的水泥砂浆,或水灰比0450

35、5的水泥浆,二次高压注浆宜使用水灰比045055的水泥浆。 3二次高压注浆压力宜控制在255OMPa之间,注浆时间可根据注浆工艺实验确定或一次注浆锚固体强度达成5MPa后进行。 4锚杆的张拉与施加预应力(锁定)应符合以下规定: (1)锚固段强度大于15MPa并达成设计强度等级的75后方可进行张拉; (2)锚杆张拉顺序应考虑对邻近锚杆的影响; (3)锚杆宜张拉至设计荷载的0910倍后,再按设计规定锁定; (4)锚杆张拉控制应力不应超过锚固体强度标准值的075倍。 5锚杆倾角宜为15o25o,且不大于45o。 6锚杆锚固体上覆土厚度不宜小于4m。7锚杆及土钉墙支护工程质量检查标准见附表6-1。锚杆

36、及土钉墙支护工程质量检查标准 附表6-1项日类别序号检查项目允许偏差(mm)检查方法主控项目1锚杆(土钉)长度30钢尺量检查2锚杆锁定力设计规定现场实测一般项目3锚杆或土钉位置100钢尺量检查4钻孔倾斜度1o测钻机倾角5浆体强度设计规定试样送检6注浆量大于理论计算浆检查计量数据7土钉墙面厚度10钢尺量检查8墙体强度设计规定试样送检附录 土体与锚固体极限摩阻力标准值土体与锚固体极限摩阻力标准值 附表6-2土的名称土的状杰sik(kPa)填 土1620淤 泥1016淤泥质土1620粘性土IL10.75 IL10.50 IL0.750.25 IL0.500.00.900.75e0.90e0.7522

37、44446464100粉细砂稍 密中 密密 实224242636385中 砂稍 密中 密密 实5474749090120粗 砂稍 密中 密密 实90130130170170220砾 砂中密、密实190260注:1表中sik系采用直孔一次常压灌浆工艺计算值;当采用二次灌浆、扩孔工艺时可适当提高。 2本表摘自建筑基坑支护技术规程(JGJl2099)。63 基坑支撑系统 631 钢支撑失稳 1现象大直径灌注桩,钢支撑支护,水泥搅拌桩作截水帐幕,基坑深8m、9m不等,当土方挖到设计标高时,一根支撑连杆断裂,围护桩大幅度位移,距坑5m远的路面出现裂缝。 2因素分析 (1)设计支撑系统截面偏小。(2)未考

38、虑长细比影响,安全度严重局限性,随着基坑开挖深度加大,支撑系统承受压力增大,导致杆件失稳破坏,支护桩大幅度位移。 3防治措施 (1) (1) 支撑系统的设计计算应按建筑基坑支护技术规程(JGJ 120一99)中第4章第5节(45)支撑体系计算规定设计。(2) (2) 对工程的具体情况,如土质情况,施工单位等,设计时在安全系数方面可予适当考虑,对建设单位规定节约应通盘研究考虑。 632 角撑未及时支撑导致地面裂缝 l,现象双排小直径灌注桩加两层钢支撑及角撑,坑深65m,挖土到设计底标高时,围护桩发生滑移倾斜,导致道路及场地地面裂缝。 2因素分析(1) (1) 为了挖土方便,下层支撑中的(斜)角撑

39、未及时跟上支撑,改变了围护结构的受力情况,导致北边桩滑移倾斜,带动其他桩洲顷斜。 (2)挖土施工未按施工方案操作。 (3)市政道路地下水管破坏,大量水渗入基坑内,减少土的力学指标。 3防治措施(1) (1) 基坑工程必须按照施工方案规定施工,即如何分层挖土,何时加撑和斜角支撑等,千万不能马虎,必须按方案施工。(2) (2) 较多工程若发现有地下水管或化粪池漏水现象,在设计前应调查了解,如发现问题则在设计时应将士的力学指标如,c值予以考虑,即将地质勘探提供的指标,计算时适当提高安全度,施工时发现有漏水,则应立即组织排除。633 钢管支撑间距过大。节点解决不妥 1现象坑深11m,800钢筋混凝土灌

40、注桩,设两道91411钢管支撑,间距8m。挖土至设计标高时,约30m长支护结构向坑内侧倾斜25m,基坑底宽7m的土隆起18m,导致巨大经济损失,影响工期。 2因素分析 (1)支撑间距过大,支撑节点解决不妥,延长数十米的结构向内倾斜。 (2)灌注桩入土深度(嵌因深度局限性),引起坑内土隆(3)基坑内土的抗力局限性,施工又逢雨季,基坑土体抗隆起稳定性局限性,基坑实际已呈破坏状态。 3防治措施 (1)支撑体系应按规定计算拟定间距,解决好节点,如做钢围檩并与围檩焊接好。 (2)必须验算灌注桩嵌因长度,以防止坑内被动土水平抗力局限性。 (3)雨季施工应有基坑施工方案,重要是控制地面及地下水。 634 钢管支撑弯曲破坏 1现象淤泥质粘土地质基坑深10m,800灌注桩,校长16m,两道91411钢管支撑。基坑挖土到设计标高时,在宽度方向发生整体滑动,坑底大量土体隆起,地面、道路

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服