1、计量经济学精要重点什么是OLS估计?原理ols估计是指样本回归函数尽可能好的拟合这组织,即样本回归线上的点与真实观测点的总体误差尽可能小的估计方法。一、什么是计量经济学? 答:计量经济学以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与及经济活动数量规律的研究,并以建立和应用随机性的经济计量模型为核心的一门经济学科。计量经济学模型揭示经济活动中各种因素之间的定量关系,用随机性的数量方程加以描述。二、建立计量经济学模型的步骤和要点1.理论模型的设计(确定模型所包含的变量,确定模型的数量形式,拟定理论模型中的待估参数的理论期望值)2.样本数据的收集(常用的样本数
2、据:时间序列数据,截面数据,虚变量数据)3.模型参数的估计(选择模型参数估计方法,应用软件的使用)4.模型的检验 模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。经济意义检验需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;统计检验需要检验模型参数估计值的可靠性,即检验模型的统计学性质;计量经济学检验需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量
3、变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。5.模型成功的三要素:理论、方法、数据三、计量经济学模型的应用方面(功能)答:结构分析,经济预测,政策评价,检验与发展经济理论四、引入随机干扰项的原因,内容?原因:1.代表未知的影响因素2.代表数据观测误差3.代表残缺数据4.代表模型设定误差5.代表众多细小影响因素6.变量的内在随机性内容:1.被遗漏的影响因素(由于研究者对客观经济现象了解不充分,或是由于经济理论上的不完善,以至于使研究者在建立模型时遗漏了一些对被解释变量有重要影响的变量);2.变量的测量误差(在观察和测量变量时,种种原因使观测值并不等于他的真实值而造成的误差
4、);3.随机误差(在影响被解释变量的诸因素中,还有一些不能控制的因素);4.模型的设定误差(在建立模型时,由于把非线性关系线性化,或者略去模型)五、什么是随机误差项和残差,他们之间的区别是什么随机误差项u=Y-E(Y/X),而总体回归函数Y=Y+e,其中e就是残差,利用Y估计Y时带来的误差e=Y-Y是对随机变量u的估计六、一元线性回归模型的基本假设主要有哪些?违背基本假设是否就不能进行估计1.回归模型是正确设定的;2.解释变量X是确定性变量不是随机变量;在重复抽样中取固定值。3.解释变量在x所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X的样本方差趋于一个非零的有限常数。4.随
5、机误差项u具有给定X条件下的零均值,同方差以及不序列相关性,即E(ui/Xi)=0;Var (ui/Xi)=sm2;Cov(ui,uj/ Xi,Xj)=0 5. 随机误差项与解释变量之间不相关:Cov(Xi, Ui)=0 6. 随机误差项服从零均值、同方差的正态分布违背.还可进行估计,只是不能使用普通最小二乘法进行估计。七、高斯-马尔可夫定理如果满足古典线性回归模型的基本假定,则在所有线性无偏估计量中,OLS估计量具有最小方差,即OLS估计量是最优线性无偏估计量。假设条件:1.回归模型是正确设定的;2.解释变量X是确定性变量不是随机变量;在重复抽样中取固定值。3. 解释变量在x所抽取的样本中具
6、有变异性,而且随着样本容量的无限增加,解释变量X的样本方差趋于一个非零的有限常数。4.随机误差项u具有给定X条件下的零均值,同方差以及不序列相关性八、异方差性对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。类型:单调递增型,单调递减型,复杂型。原因:模型中遗漏了随时间变化影响逐渐增大的因素。(即测量误差变化)模型函数形式设定误差。随机因素的影响。(即截面数据中总体各单位的差异)后果:1参数估计量非有效2.变量的显著性检验失去意义3.模型的预测失效检验:图示检验法 , 戈德菲尔德匡特检验,怀特检验,帕克检验和戈里瑟检验处理:基本思想:变异方差为同方差,或尽量缓解
7、方差变异的程度。(加权最小二乘法(WLS),异方差稳健标准误法)九、序列相关性如果模型的随机干扰项违背了相互独立的基本假设,则称为存在.原因:1经济数据序列惯性;2模型设定的偏误;3滞后效应;4蛛网现象;5数据的编造后果:1参数估计量非有效;2.变量的显著性检验失去意义;3.模型的预测失效检验方法:一、图示法;二、回归检验法;三、D.W.检验法;四、拉格朗日乘数检验补救方法:广义最小二乘法(GLS),广义差分法,随机干扰项相关系数的估计,广义差分法在计量经济学软件中的实现,序列相关稳健标准误法。十、多重共线性如果模型的解释变量之间存在着较强的相关关系,则称模型存在多重共线性。原因:(1)经济变
8、量相关的共同趋势2.滞后变量的引入3.样本资料的限制后果:1.完全共线性下参数估计量不存在2.近似共线性下普通最小二乘法参数估计量的方差变大3.参数估计量经济含义不合理4.变量的显著性检验和模型的预测功能失去意义检验:1.检验多重共线性是否存在2.判明存在多重共线性的范围克服方法:1.排除引起共线性的变量2.差分法3.见笑参数估计量的方差十一、回归模型中引入虚拟变量的作用是什么?有哪几种基本的引入方式?它们各适合用于什么情况答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。加法方式与乘法方式是最主要的引入方式。前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于
9、定性因素对斜率项产生影响的情况。除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。十二、滞后变量模型有哪几种类型?分布滞后模型使用OLS方法存在哪些问题?答:滞后变量模型有分布滞后模型和自回归模型两大类,前者只有解释变量及其滞后变量作为模型的解释变量,不包含被解释变量的滞后变量作为模型的解释变量;而后者则以当期解释变量与被解释变量的若干期滞后变量作为模型的解释变量。分布滞后模型有无限期的分布滞后模型和有限期的分布滞后模型;自回归模型又以Coyck模型、自适应预期模型和局部调整模型最为多见。分布滞后模型使用OLS法存在以下问题:(1)对于无限期
10、的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计。(2)对于有限期的分布滞后模型,使用OLS方法会遇到:没有先验准则确定滞后期长度,对最大滞后期的确定往往带有主观随意性;如果滞后期较长,由于样本容量有限,当滞后变量数目增加时,必然使得自由度减少,将缺乏足够的自由度进行估计和检验;同名变量滞后值之间可能存在高度线性相关,即模型可能存在高度的多重共线性。传统或经典方法论(建立模型)(一)理论模型的设计1、理论或假说的陈述;2、理论的数学模型的设定;3、理论的计量经济模型的设定;(二)获取数据(三)模型的参数估计(四)模型的检验1、经济意义的检验2、统计检验3、计量经济学检验4、预测
11、检验(五)模型应用1、经济分析/构分析2、经济预测3、政策评价4、检验与发展经济理论计量经济学模型成功的三要素理论、方法、数据回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。用意在于通过后者的已知或设定值,去估计和(或)预测前者的(总体均值。前一个变量被称为被解释变量或应变量后一个变量被称为解释变量或自变量总体回归函数(方程):PRF由于统计相关的随机性,回归方程关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所可能出现的对应值的平均值。在给定解释变量条件下被解释变量的期望轨迹称为总体回归线,或更一般地称为
12、总体回归曲线相应的函数(方程):总体回归函数(方程)(PRF)含义:回归函数(PRF)说明被解释变量的平均状态(总体条件期望)随解释变量X变化的规律随机干扰项是在模型设定中省略下来而由集体地影响着被解释变量的全部变量的替代物样本回归函数(SRF) 样本回归函数的随机形式线性回归模型在上述意义上的基本假设:(1) 解释变量,是确定性变量,不是随机变量,而且解释变量之间互不相关。(2) 随机误差项具有均值和同方差。即()i=1,2,n Var()= i=1,2,n其中E表示均值或期望,也可用表示;ar表示方差,也可以用表示。(3) 随机误差项在不同样本点之间是独立的,不存在序列相关。即Cov(,)
13、=0 ij i,j=1,2,n其中ov表示协方差。(4) 随机误差项与解释变量之间不相关。即Cov(,)=0 j=1,2,k i=1,2,n(5) 随机误差项服从均值、同方差的正态分布。即 i=1,2,n一元线性回归模型的参数估计:普通最小二乘法估计已知一组样本观测值(,),(i=1,2,n),要求样本回归函数尽可能好地拟合这组值,即样本回归线上的点与真实观测点的“总体误差”尽可能地小,或者说被解释变量的估计值与观测值应该在总体上最为接近,最小二乘法给出的判断的标准是:二者之差的平方和最小。即在给定样本观测值之下,选择出、能使与之差的平方和最小。为什么用平方和?因为二者之差可正可负,简单求和可
14、能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。根据微积分学的运算,可推得用于估计、的下列方程组 方程组(2.2.6)称为正则方程组线性性:即是否是另一随机变量的线性函数;无偏性:即它的均值或期望值是否等于总体的真实值;有效性:即它是否在所有线性无偏估计量中具有最小方差。高斯马尔可夫定理:在给定经典线形回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量普通最小二乘估计量OLS(ordinary least Squares)具有线性、无偏性、最小方差性等优良性质。具有这些优良性质的估计量又称为最佳线性无偏估计量,即BLUE估计量 总体方差在总体方差的无
15、偏估计量求出后,估计的参数和的方差和标准差的估计量分别是的样本方差: 的样本标准差: 样本方差: 的样本标准差:的无偏估计量为 一元线性回归模型的统计检验1. 拟合优度检验:对样本回归直线与样本观测值之间拟合优度的检验。度量拟合优度的指标:判定系数TSS=ESS+RSS 称为总离差分解式,说明的观测值围绕其均值的总离差可分解为两部分,一部分来自回归线,另一部分则来自随机势力。称为(样本)判定系数,表明,在总离差平方和中,回归平方和所占的比重越大,残差平方和所占的比重越小,则回归直线与样本点拟合得越好。在回归分析中,是一个比r更有意义的度量,因为前者显示因变量的变异中由解释变量解释的部分占怎样一
16、个比例,即对一个变量的变异在多大程度上决定另一个变量的变异,提供一个总的度量,而后者则没有这种价值存在 2.参数显著性检验(t检验)在一元线性回归模型中,在随机误差项为正态分布的假设下,由于则可构造统计量 t = t(n-2)即该t统计量服从自由度为n-2的t分布。用t统计量进行参数显著性检验的步骤:对总体参数提出假设(原假设) : , (对立假设/备则假设) : 以原假设构造t统计量,并由观测数据计算其值 t = 式中,为参数估计量的标准差:=给定显著水平,查自由度为n-2的t分布表,得临界值;若| t | ,则拒绝,接受:,即认为所对应的变量对被解释变量的影响不容忽视;若| t | =,则
17、接受:,即认为所对应的变量对被解释变量没有明显的影响同样地,由于,可构造统计量 多元线性回归模型在实际经济问题中,一个变量往往要受到多个原因变量的影响,表现在线性回归模型中的解释变量有多个,这样的模型被称为多元线性回归模型。 i=1、2、n(3.1.1)由(3.1.1)表示的n个随机方程的矩阵表达式为:Y=XB+N其中, 普通最小二乘估计随机抽取被解释变量和解释变量的n组样本观测值:如果模型的参数估计值已经得到,则有: i=1,2,n 那么,根据最小二乘原理,参数估计值应该是下列方程组的解。即 其中Q = =得到待估参数估计值正规方程组: 解该(k+1)个方程组成的线性代数方程组,即可得到(k
18、+1)个待估参数的估计值,j = 0,1,2,k.。的矩阵形式如下: = 即: 由于满秩,故有多元回归方程及偏回归系数的含义在经典回归模型的假定下,式(3.1.1)两边对Y求条件期望得:称为多元回归方程(函数)。多元回归分析是以多个解释变量的固定值为条件的回归分析,并且所获得的,是诸变量X值固定时Y的平均值或Y的平均响应。诸称为偏回归系数。偏回归系数的含义如下: 度量着在保持,不变的情况下,每变化1个单位时,Y的均值E(Y)的变化,或者说给出的单位变化对Y均值的“直接”或“净”(不含其它变量)影响。其它参数的含义与之相同。OLS估计量的统计性质1.线性性 2、无偏性 3、最小方差性 随机误差项
19、方差的估计随机误差项方差的无偏估计为:多元线性回归模型的统计检验一、拟合优度检验如果在模型中增加一个解释变量,回归平方就会增大,导致增大。这就给人一个错觉:要使得模型拟合得好,只要增加解释变量就可。但是,现实情况往往是,由增加解释变量个数引起的的增大与拟合好坏无关,因此在含解释变量个数k不同的模型之间比较拟合优度,就不是一个适合的指标,必须加以调整。在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。其中为残差平方和的自由度,为总体平方和的自由度。二、方程的显著性检验(F检验) 服从自由度为(k
20、,n-k-1)的F分布。给定一个显著水平,可得到一个临界值,根据样本再求出F统计量的数值后,可通过或 来拒绝或接受原假设。三、变量显著性检验(t检验)在变量显著性检验中设计的原假设为:给定一个显著水平,得到一个临界值,于是可根据或来拒绝或接受原假设。异方差的概念对于模型 同方差性假设为 如果出现即对不同的样本点,随机误差项的方差不再是常数,则认为出现了异方差性。异方差的类型(1)单调递增型:随X的增大而增大;(2)单调递减型:随X的增大而减小;(3)复杂型 与X的变化呈复杂形式(1)单调递增型:随X的增大而增大;(2)单调递减型:随X的增大而减小;(3)复杂型: 与X的变化呈复杂形式异方差性的
21、后果1.参数估计量非有效(1)仍存在无偏性(2)不具有最小方差性2.变量的显著性检验失去意义3.模型的预测失效检验思路:正如上面所指出的,异方差性,即相对于不同的解释变量观测值,随机误差项具有不同的方差,那么检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。1、图示法 2.戈德菲尔德-匡特(Goldfeld-Quandt)检验G-Q检验的思想:先将样本一分为二,对子样和子样分别作回归,然后利用两个子样的残差之比构造统计量进行异方差检验。由于该统计量服从于F分布,因此假如存在递增的异方差,则F远大于1;反之就会等于1(同方差)、或小于1(递减方差)。G-Q检
22、验的步骤:将n对样本观察值()按解释变量观察值的大小排队;将序列中间的个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为。对每个子样分别求回归方程,并计算各自的残差平方和。分别用与表示对应较小与较大的子样本的残差平方和(自由度均为)提出假设:分别为两个子样对应的随机项误差。构造统计量 检验。给定显著性水平,确定F分布表中相应的临界值。若,存在递增异方差;反之,不存在递增异方差。3.戈里瑟(Gleiser)检验与帕克(Park)检验加权最小二乘法(WLS)(Weighted Least Squares )。加权最小二乘法是对原来模型加权,使之变成一个新的不存在
23、异方差性的模型,然后采用普通最小二乘法估计其参数。例如,在递增异方差下,由于对来自的较小的子样本,其真实的总体方差较小,与回归直线拟合值之间的残差的信度较大,应予以重视;而对较大的子样本,由于真实总体的方差较大,残差反映的信息应打折扣。这就意味着,在采用OLS方法时,对较小的残差平方需要赋予较大的权数,对较大的赋予较小的权数,以对残差提供的信息的重要程度作一番校正,提高参数估计的精度。加权最小二乘法具体步骤是:选择普通最小二乘法估计原模型,得到随机误差项的近似估计量;建立的数据序列;选择加权最小二乘法,以序列作为权,进行估计得到参数估计量。实际上是以乘原模型的两边,得到一个新模型,采用普通最小
24、二乘法估计新模型。注:在实际操作中人们通常采用如下的经验方法,即并不对原模型进行异方差性检验,而是直接选择加权最小二乘法,尤其是采用截面数据作样本时。如果确实存在异方差性,则被有效的消除了;如果不存在异方差性,则加权最小二乘法等价于普通最小二乘法。序列相关性对于模型随机误差项互相独立的基本假设表现为: 如果出现 即对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。在其他假设仍成立的条件下,序列相关即意味着, 如果仅存在(5.1.2)称为一阶序列相关,或自相关这是最见的一种序列相关问题。自相关往往可写成如下形式: 其中:被称为自协方差系数或一阶自相关
25、系数是满足以下标准的OLS假定的随机干扰项:序列相关产生的原因 惯性 设定偏误:模型中未含应包括的变量 蛛网现象 数据的“编造 序列相关性的后果参数计量非有效 变量的显著性失去意义 序列相关性的检验关于序列相关性的检验方法有多种,例如冯诺曼比检验法、回归检验法、D.W.检验等。这些检验方法的共同思路是,首先采用普通最小二乘法估计模型,以求得随机误差项的“近似估计量”,用表示:然后通过分析这些“近似估计量”之间的相关性以达到判断随机误差项是否具有序列相关性的目的。图示法 回归检验法以为被解释变量,以各种可能的相关量,诸如以、等为解释变量,建立各种方程 对方程进行估计并进行显著性检验,如果存在某一
26、种函数形式,使得方程显著成立,则说明原模型存在序列相关性。具体应用时需要反复试算。回归检验法的优点是一旦确定了模型存在序列相关性,也就同时知道了相关的形式,而且它适用于任何类型的序列相关性问题的检验。杜宾瓦森检验法最具有应用价值的是D.W.检验,它仅适用于一阶自相关的检验。构造计量: 计算该统计量的值,根据样本容量n和解释变量数目k查D.W.分布表,得到临界值dl 和du,然后按照下列准则考察计算得到的D.W.值,以判断模型的自相关状态。若0D.W.dl 则存在正自相关dlD.W.du 不能确定duD.W.4-dl无自相关4-duD.W.4-dl不能确定4-dl D.W.4 存在负自相关也就是
27、说,当D.W.值为2左右时,模型不存在一阶自相关。序列相关性的修正如果模型被检验证明存在序列相关性,则需要发展新的方法估计模型,最常用的方法是广义最小二乘法和差分法。一、广义最小二乘法(GLS)二、差分法差分法是一类克服序列相关性的有效的方法,被广泛地采用。差分法是将原模型变换为差分模型,分为一阶差分法和广义差分法。多重共线性的概念对于模型: 其基本假设之一是解释变量X1,X2,Xk 是互相独立的。如果某两个或多个解释变量之间出现了相关性,则称为多重共线性(Multicollinearity)。如果存在其中c不全为0,即某一个解释变量可以用其它解释变量的线性组合表示,则称为解释变量间存在完全共
28、线性。如果存在其中c不全为0,vi为随机误差项,则称为一般共线性(近似共线性)或交互相关(intercorrelated)。实际经济问题中的多重共线性一般地,产生多重共线性的主要原因有以下三个方面:1、经济变量相关的共同趋势2、滞后变量的引入3、样本资料的限制多重共线性的后果1.完全共线性下参数估计量不存在2.近似共线性下普通最小二乘法参数估计量增大(但仍有效)3.参数估计量经济含义不合理4.变量的显著性检验失去意义5模型的预测功能失效多重共线性的检验多重共线性检验的任务是:(1)检验多重共线性是否存在;(2)估计多重共线性的范围。一、检验多重共线性是否存在1、对两个解释变量的模型,采用简单相
29、关系数法2、对多个解释变量的模型,采用综合统计检验法二、判断存在多重共线性的范围1.判定系数检验法2.逐步回归法克服多重共线性的方法1.第一类方法:排除引起共线性的变量2.第二类方法:差分法随机解释变量问题对于模型 其基本假设之一是解释变量X1,X2,Xk是确定性变量。如果某个或多个随机变量作解释变量,则称为随机解释变量问题。为讨论方便,我们假设(7.1.1)中X2为随机解释变量。对于随机解释变量问题1、随机解释变量与随机误差项不相2、随机解释变量与随机误差项在小样本下相关,在大样本下渐近无关随机解释变量的后果 随机解释变量与随机误差项不相关 随机解释变量与随机误差项在小样本下相关,在大样本下
30、渐近无关 随机解释变量与随机误差项高度相关 滞后被解释变量作解释变量,并且与随机误差项相关工具变量法工具变量,顾名思义是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量。那么,选择为工具变量的变量必须满足以下条件:与所替代的随机解释变量高度相关;与随机误差项不相关;与模型中其它解释变量不相关,以避免出现多重共线性为了在模型中能够反映这些因素的影响,并提高模型的精度,需要将它们“量化”,这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些因素的属性类型,构造只取“0”或“1”的人工变量,通常称为虚拟变量(dummy variables)记为D。同时含有一般解释变量与
31、虚拟变量的模型称为虚拟变量模型或者方差分析(analysis-of variance: ANOVA)模型。虚拟变量的引入 虚拟变量做为解释变量引入模型有两种基本方式:加法方式和乘法方式(1),且,即两个回归相同,称为重合回归;(2),但,即两个回归的差异仅在其截距,称为平行回归;(3),但,即两个回归的差异仅在其斜率,称为汇合回归;(4),且,即两个回归完全不同,称为相异回归。模型中引入虚拟变量的作用1.分离异常因素的影响;2.考察不可试题的“定性”因素的不同属性类型对因变量的作用;3.提高模型精度。虚拟变量的设置原则 虚拟变量的个数须按以下原则确定:每一定性变量所需的虚拟变量个数要比该定性变
32、量的类别数少1,即如果有m个定性变量,只在模型中引入m-1个虚拟变量。联立方程模型(Simultaneous equation models)就是由多个相互联系的单一方程组成的方程组,每一方程中的因变量在方程组中被联合决定,从而能够全面反映经济系统的运行规律。变量在联立方程计量经济学模型中,对于其中每个随机方程,其变量仍然有被解释变量与解释变量之分。但是对于模型系统而言,变量往往分为内生变量和外生变量两人类,外生变量与滞后内生变量又被统称为先决变量。内生变量是由模型系统决定的变量,其大小由方程组的联立解得到。外生变量一般是由系统外部确定的变量外生变量与滞后内生变量(lagged endogenous variables)统称为先决变量或前定变量。