收藏 分销(赏)

求数列通项公式方法经典总结.doc

上传人:天**** 文档编号:3880534 上传时间:2024-07-23 格式:DOC 页数:3 大小:38.04KB
下载 相关 举报
求数列通项公式方法经典总结.doc_第1页
第1页 / 共3页
求数列通项公式方法经典总结.doc_第2页
第2页 / 共3页
求数列通项公式方法经典总结.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、求数列通项公式方法(1)公式法(定义法)根据等差数列、等比数列的定义求通项例:1已知等差数列满足:, 求;2。已知数列满足,求数列的通项公式; 3.数列满足=8, (),求数列的通项公式;4. 已知数列满足,求数列的通项公式;5.设数列满足且,求的通项公式6. 已知数列满足,求数列的通项公式。7。等比数列的各项均为正数,且,求数列的通项公式8. 已知数列满足,求数列的通项公式;9.已知数列满足 (),求数列的通项公式;10.已知数列满足且(),求数列的通项公式;11. 已知数列满足且(),求数列的通项公式;12。数列已知数列满足则数列的通项公式= (2)累加法1、累加法 适用于: 若,则 两边

2、分别相加得 例:1.已知数列满足,求数列的通项公式。2。 已知数列满足,求数列的通项公式。3.已知数列满足,求数列的通项公式。4.设数列满足,求数列的通项公式(3)累乘法适用于: 若,则两边分别相乘得,例:1。 已知数列满足,求数列的通项公式。2.已知数列满足,,求。3。已知, ,求。(4)待定系数法 适用于解题基本步骤:1、确定2、设等比数列,公比为3、列出关系式4、比较系数求,5、解得数列的通项公式6、解得数列的通项公式例:1。 已知数列中,,求数列的通项公式。2.(2006,重庆,文,14)在数列中,若,则该数列的通项_3。(2006。 福建.理22.本小题满分14分)已知数列满足求数列

3、的通项公式;4。已知数列满足,求数列的通项公式.解:设5. 已知数列满足,求数列的通项公式。解:设6。已知数列中,求7。 已知数列满足,求数列的通项公式。解:设 8. 已知数列满足,求数列的通项公式。递推公式为(其中p,q均为常数)。先把原递推公式转化为其中s,t满足9. 已知数列满足,求数列的通项公式。10。已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;11.已知数列中,,,,求(5)递推公式中既有 分析:把已知关系通过转化为数列或的递推关系,然后采用相应的方法求解。1.(2005北京卷)数列an的前n项和为Sn,且a1=1,n=1,2,3,求a2,a3,a4的值及数列a

4、n的通项公式 2.(2005山东卷)已知数列的首项前项和为,且,证明数列是等比数列3已知数列中,前和求证:数列是等差数列求数列的通项公式4。 已知数列的各项均为正数,且前n项和满足,且成等比数列,求数列的通项公式。(6)根据条件找与项关系例1。已知数列中,若,求数列的通项公式2.(2009全国卷理)在数列中,(I)设,求数列的通项公式(7)倒数变换法 适用于分式关系的递推公式,分子只有一项例:1. 已知数列满足,求数列的通项公式。(8)对无穷递推数列消项得到第与项的关系例:1。 (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。2.设数列满足,求数列的通项;(8)、迭代法例:1.已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。(9)、变性转化法1、对数变换法 适用于指数关系的递推公式例: 已知数列满足,求数列的通项公式.解:因为,所以。两边取常用对数得2、换元法 适用于含根式的递推关系例: 已知数列满足,求数列的通项公式。解:令,则

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服