收藏 分销(赏)

求欧拉回路的Fleury算法教学提纲.doc

上传人:w****g 文档编号:3840618 上传时间:2024-07-22 格式:DOC 页数:6 大小:27.50KB
下载 相关 举报
求欧拉回路的Fleury算法教学提纲.doc_第1页
第1页 / 共6页
求欧拉回路的Fleury算法教学提纲.doc_第2页
第2页 / 共6页
求欧拉回路的Fleury算法教学提纲.doc_第3页
第3页 / 共6页
求欧拉回路的Fleury算法教学提纲.doc_第4页
第4页 / 共6页
求欧拉回路的Fleury算法教学提纲.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、求欧拉回路的Fleury算法精品资料一、 实验内容:判断图G是否存在欧拉回路,若存在,输出其中一条欧拉回路。否则,显示无回路。二、 实验过程与结果1. 问题简介:通过图(无向图或有向图)中所有边一次且仅一次行遍所有顶点的回路称为欧拉回路。具有欧拉回路的图称为欧拉图2. 算法思想(框图):(1)任取v0V(G),令P0=v0.(2)设Pi=v0e1v1e2eivi已经行遍,按下面方法来从E(G)-e1,e2,ei中选取ei+1:(a)ei+1与vi相关联;(b)除非无别的边可供行遍,否则ei+1不应该为Gi=G-e1,e2,ei中的桥。(3)当(2)不能再进行时,算法停止。 可以证明,当算法停止

2、时所得简单回路Pm=v0e1v1e2emvm(vm=v0)为G中一条欧拉回路。3. 数据输入: 边数5,点数6 相关联的点1 2 1 3 2 5 4 2 3 2 4 54. 运行结果:存在欧拉回路 1,3,2,4,5,2,15. 分析总结:Fleury算法是求欧拉图的十分有效的算法,在执行过程中需要用到类似于图的深度优先遍历,因为该算法就是需要将已找到的路径不断的扩展下去,直到将所有边扩展进路径。判断是否为欧拉图(连通性和奇度点)图 输出无欧拉回路0=V0=1Pi=v0e1v1eivi,ei+1E(G)-e1,eiei+1与vi关联,i=i+1,ei+1非桥Y输出欧拉回路Pm=v0e1v1e2

3、emvm(vm=v0)E(G)-e1,e2,ei= Fleury算法流程图三、 完整源程序仅供学习与交流,如有侵权请联系网站删除 谢谢6#include #include #include struct stackint top , node81; T,F,A; /顶点的堆栈int M8181; /图的邻接矩阵int n;int degree81;bool brigde(int i,int j) int flag81,t,s; for(s=1;s0) for(s=1;s0) if(Mts=1) if(flags=0) A.top+; A.nodeA.top=s; flags=1;t=s;bre

4、ak; if(sn) A.top-; t=A.nodeA.top; for(s=1;s0) if(flags=0) Mij=Mij=1; return true; break; if(sn) return false; void Fleury(int x) /Fleury算法 int i,b=0; if(T.top=n+1) T.top+;T.nodeT.top=x; for(i=1;i=n;i+) if(Mxi=1)if(brigde(x,i)=false)b=1;break;if(b=1)Mxi=Mix=0;degreex-;degreei-;Fleury(i); void main()

5、int m , s , t , num , i , j,flag81; /input coutnm;/n顶点数 m边数 memset(M , 0 , sizeof(M); for (i = 1; i =n; i +) degreei=0; for (i = 0; i m; i +) coutntt输入第i+1st; Mst = 1; Mts = 1; degrees=degrees+1; degreet=degreet+1; /判断是否存在欧拉回路for(i=1;i=n;i+)flagi=0; s = 0;/判断是否连通F.top=1;F.node1=1;flag1=1;t=1;for(j=2

6、;jn) s=1; else while(F.top=1) for(j=2;jn) F.top-; t=F.nodeF.top; for(i=1;i=n;i+) if(flagi=0) s=1; break; if(s=0) /判断有无奇度点 for (i = 1; i = n; i +)num = 0;for (j = 1; j = n; j +)num += Mij;if (num % 2 = 1) s +; break; if (s = 0) T.top=0;Fleury(1);coutnt该图的一条欧拉回路:;for(i=1;i=m+1;i+) coutT.nodei ; else coutnt该图不存在欧拉回路!n;

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服