资源描述
1.若可导函数f(x)满足f′(3)=9,则f(3x2)在x=1处的导数值为( )
A.1 B.9
C.27 D.54
答案 D
解析 ∵[f(3x2)]′=f′(3x2)(3x2)′=6xf′(3x2),
∴f(3x2)在x=1处的导数为6×1×f′(3)=54.
2.求y=sin2的导数.
解析 解法一 设y=u2,u=sinv,v=2x+,则
y′x=y′u·u′v·v′x=(u2)′u·(sinv)′v·′x
=2u·cosv·2=2sin·cos·2
=2sin.
解法二 ∵y=sin·sin,
∴y′=′·sin+
sin′
=2sin·′
=2sin·cos·′x
=2sin.
解法三 ∵y=,
∴y′=′
=0+sin·′x
=2sin.
3.求cos22x的导数.
解析 (cos22x)′
=2cos2x·(cos2x)′
=2cos2x·(-sin2x)·(2x)′
=-4sin2x·cos2x
=-2sin4x.
(其它方法略)
展开阅读全文