收藏 分销(赏)

2021高考数学(广东专用-理)一轮题库:第7章-第3讲--二元一次不等式(组)与简单的线性.docx

上传人:快乐****生活 文档编号:3823201 上传时间:2024-07-21 格式:DOCX 页数:4 大小:215.84KB
下载 相关 举报
2021高考数学(广东专用-理)一轮题库:第7章-第3讲--二元一次不等式(组)与简单的线性.docx_第1页
第1页 / 共4页
2021高考数学(广东专用-理)一轮题库:第7章-第3讲--二元一次不等式(组)与简单的线性.docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述
第3讲 二元一次不等式(组)与简洁的线性 规划问题 一、选择题 1.不等式x-2y>0表示的平面区域是(  ). 解析 将点(1,0)代入x-2y得1-2×0=1>0. 答案 D 2.设实数x,y满足不等式组若x,y为整数,则3x+4y的最小值是(  ). A.14 B.16 C.17 D.19 解析 线性区域边界上的整点为(3,1),因此最符合条件的整点可能为(4,1)或(3,2),对于点(4,1),3x+4y=3×4+4×1=16;对于点(3,2),3x+4y=3×3+4×2=17,因此3x+4y的最小值为16. 答案 B 3.若不等式组 表示的平面区域是一个三角形,则a的取值范围是 (  ). A.(-∞,5) B.[7,+∞) C.[5,7) D.(-∞,5)∪[7,+∞) 解析 画出可行域,知当直线y=a在x-y+5=0与y轴的交点(0,5)和x-y+5=0与x=2的交点(2,7)之间移动时平面区域是三角形.故5≤a<7. 答案 C 4.设实数x,y满足条件若目标函数z=ax+by(a>0, b>0)的最大值为12,则+的最小值为(  ). A. B. C. D.4 解析 由可行域可得,当x=4,y=6时,目标函数z=ax+by取得最大值,∴4a+6b=12,即+=1.∴+=·=++≥+2=. 答案 A 5.实数x,y满足若目标函数z=x+y取得最大值4,则实数a的值为 (  ). A.4 B.3 C.2 D. 解析 作出可行域,由题意可知可行域为△ABC内部及边界,y=-x+z,则z的几何意义为直线在y轴上的截距,将目标函数平移可知当直线经过点A时,目标函数取得最大值4,此时A点坐标为(a,a),代入得4=a+a=2a,所以a=2. 答案 C 6.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的方案中,要求每天消耗A、B原料都不超过12千克.通过合理支配生产方案,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 (  ). A.1 800元 B.2 400元 C.2 800元 D.3 100元 解析 设某公司生产甲产品x桶,生产乙产品y桶,获利为z元,则x,y满足的线性约束条件为目标函数z=300x+400y. 作出可行域,如图中四边形OABC的边界及其内部整点.作直线l0:3x+4y=0,平移直线l0经可行域内点B时,z取最大值,由得B(4,4),满足题意,所以zmax=4×300+4×400=2 800. 答案 C 二、填空题 7.若x,y满足约束条件则z=3x-y的最小值为________. 解析 画出可行域,如图所示,将直线y=3x-z移至点A(0,1)处直线在y轴上截距最大,zmin=3×0-1=-1. 答案 -1 8.若x,y满足约束条件则x-y的取值范围是________. 解析 记z=x-y,则y=x-z,所以z为直线y=x-z在y轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC区域所示.结合图形可知,当直线经过点B(1,1)时,x-y取得最大值0,当直线经过点C(0,3)时,x-y取得最小值-3. 答案 [-3,0] 9.设实数x、y满足则的最大值是________. 解析 不等式组确定的平面区域如图阴影部分. 设=t,则y=tx,求的最大值,即求y=tx的斜率的最大值.明显y=tx过A点时,t最大. 由解得A. 代入y=tx,得t=.所以的最大值为. 答案  10.设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为________. 解析 目标函数z=x+my可变为y=-x+, ∵m>1,∴-1<-<0,z与同时取到相应的最大值,如图,当目标函数经过点P时,取最大值,∴+<2,又m>1,得1<m<1+. 答案 (1,1+) 三、解答题 11.设集合A={(x,y)|x,y,1-x-y是三角形的三边长}. (1)求出x,y所满足的不等式; (2)画出点(x,y)所在的平面区域. 解 (1)已知条件即 化简即 (2)区域如下图. 12.画出不等式组表示的平面区域,并回答下列问题: (1)指出x、y的取值范围; (2)平面区域内有多少个整点? 解 (1)不等式x-y+5≥0表示直线x-y+5=0上及其右下方的点的集合,x+y≥0表示直线x+y=0上及其右上方的点的集合,x≤3表示直线x=3上及其左方的点的集合. 所以,不等式组 表示的平面区域如图所示. 结合图中可行域得x∈,y∈[-3,8]. (2)由图形及不等式组知 当x=3时,-3≤y≤8,有12个整点; 当x=2时,-2≤y≤7,有10个整点; 当x=1时,-1≤y≤6,有8个整点; 当x=0时,0≤y≤5,有6个整点; 当x=-1时,1≤y≤4,有4个整点; 当x=-2时,2≤y≤3,有2个整点; ∴平面区域内的整点共有2+4+6+8+10+12=42(个). 13.若x,y满足约束条件 (1)求目标函数z=x-y+的最值. (2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围. 解 (1)作出可行域如图,可求得A(3,4),B(0,1),C(1,0). 平移初始直线x-y=0,过A(3,4)取最小值-2,过C(1,0)取最大值1. ∴z的最大值为1,最小值为-2. (2)直线ax+2y=z仅在点(1,0)处取得最小值,由图象可知-1<-<2,解得-4<a<2. 故所求a的取值范围是(-4,2). 14.某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05. (1)分别求甲、乙产品为一等品的概率P甲,P乙; (2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分别表示生产甲、乙产品的数量,在(1)的条件下,求x,y为何值时,z=xP甲+yP乙最大,最大值是多少? 项目 用量 产品 工人(名) 资金(万元) 甲 4 20 乙 8 5 解 (1)依题意得 解得 故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4. (2)依题意得x、y应满足的约束条件为 且z=0.65x+0.4y. 作出不等式组所表示的平面区域,如图阴影部分,即可行域.作直线l0:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,此时z取得最大值.解方程组 得x=2,y=3.故M的坐标为(2,3),所以z的最大值为zmax=0.65×2+0.4×3=2.5.所以,当x=2,y=3时,z取最大值为2.5.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服