1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(九)曲线与方程(30分钟50分)一、选择题(每小题3分,共18分)1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C.由曲线与方程的概念可知,若点P(x0,y0)在曲线f(x,y)=0上,则必有f(x0,y0)=0;又当f(x0,y0)=0时,点P(x0,y0)也确定在方程f(x,y)=0对应的曲线上,故选C.2.下面四组方程表示同一条曲线的一组是()
2、A.y2=x与y=xB.y=lgx2与y=2lgxC.y+1x-2=1与lg(y+1)=lg(x-2)D.x2+y2=1与|y|=1-x2【解析】选D.主要考虑x,y的取值范围,A中y2=x中yR,而y=x中y0,B中y=lgx2中x0,而y=2lgx中x0;C中y+1x-2=1中yR,x2,而lg(y+1)=lg(x-2)中y-1,x2,故只有D正确.3.(2022石家庄高二检测)方程x2+y2=1(xy0)的曲线外形是()【解析】选C.方程x2+y2=1(xy0)表示以原点为圆心,1为半径的圆在其次、四象限的部分.4.(2022安阳高二检测)曲线y=1-x2和y=-x+2公共点的个数为()
3、A.3B.2C.1D.0【解析】选C.由y=1-x2,y=-x+2,得-x+2=1-x2,两边平方并整理得(2x-1)2=0,所以x=22,这时y=22,故公共点只有一个22,22.【误区警示】解题中易忽视y=1-x2中x的取值范围,而写成x2+y2=1,从而解出两组解而导致出错.5.假如曲线C上点的坐标满足方程F(x,y)=0,则有()A.方程F(x,y)=0表示的曲线是CB.曲线C的方程是F(x,y)=0C.点集P|PC(x,y)|F(x,y)=0D.点集P|PC(x, y)|F(x,y)=0【解析】选C.A,B错,由于以方程F(x,y)=0的解为坐标的点不愿定在曲线C上,若以方程F(x,
4、y)=0的解为坐标的点都在曲线C上,则点集P|PC=(x,y)|F(x,y)=0,故D错,选C.6.(2022青岛高二检测)方程(x-y)2+(xy-1)2=0表示的是()A.两条直线B.一条直线和一双曲线C.两个点D.圆【解析】选C.由题意,x-y=0,xy=1,所以x=1,y=1或x=-1,y=-1,所以方程(x-y)2+(xy-1)2=0表示的是两个点(1,1)或(-1,-1).二、填空题(每小题4分,共12分)7.(2022天津高二检测)点P(2,-3)在曲线x2-ay2=1上,则a=.【解析】将(2,-3)代入x2-ay2=1,得a=13.答案:13【变式训练】已知点A(a,2)既是
5、曲线y=mx2上的点,也是直线x-y=0上的一点,则m=.【解析】由于点A(a,2)在直线x-y=0上,得a=2,即A(2,2).又点A在曲线y=mx2上,所以2=m22,得m=12.答案:128.(2022重庆高二检测)假如直线l:x+y-b=0与曲线C:y=1-x2有公共点,那么b的取值范围是.【解题指南】本题考查曲线的交点问题,可以先作出曲线y=1-x2的图象,利用数形结合解题.【解析】曲线C:y=1-x2表示以原点为圆心,以1为半径的单位圆的上半部分(包括(1,0),如图,当l与l1重合时,b=-1,当l与l2重合时,b=2,所以直线l与曲线C有公共点时,-1b2.答案:-1,29.方
6、程y=x2-4x+4所表示的曲线是.【解析】原方程可化为:y=|x-2|=x-2,x2,-x+2,x2.所以方程表示的是射线x-y-2=0(x2)及x+y-2=0(x0,即k512时,直线与曲线有两个不同的交点;=0,即k=512时,直线与曲线有一个交点;0,即k0,y0时,方程可化为x+y=1,表示第一象限内的一条线段(去掉两端点),因此原方程表示的图形是一个正方形(除去四个顶点).3.已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,则点M(4,-1)()A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上【
7、解析】选C.将点M(4,-1)的坐标分别代入圆C及直线l的方程,均满足.4.(2022成都高二检测)已知方程y=a|x|和y=x+a(a0)所确定的两条曲线有两个交点,则a的取值范围是()A.a1B.0a1C.0a1D.a【解题指南】分别作出y=a|x|和y=x+a所表示的曲线.再依据图象求a的取值范围.【解析】选A.由于a0,所以方程y=a|x|和y=x+a(a0)的图象大致如图,要使方程y=a|x|和y=x+a(a0)所确定的两条曲线有两个交点,则要求y=a|x|在y轴右侧的斜率足够大,所以a1.【变式训练】如图所示,定圆半径为a,圆心为(b,c),则直线ax+by+c=0与直线x-y+1
8、=0的交点在()A.第一象限B.其次象限C.第三象限D.第四象限【解析】选C.由ax+by+c=0,x-y+1=0,所以x=-b+ca+b,y=a-ca+b.由于a+b0,b+c0,所以x0,y0,所以交点在第三象限,选C.二、填空题(每小题5分,共10分)5.(2022济宁高二检测)曲线y=|x-2|-2的图象与x轴所围成的三角形的面积是.【解析】当x-20时,原方程可化为y=-x;当x-20时,原方程可化为y=x-4.故原方程表示两条共顶点的射线,易得顶点为B(2,-2),与x轴的交点为O(0,0),A(4,0),所以曲线y=|x-2|-2与x轴围成的三角形面积为SAOB= 12|OA|y
9、B|=4.答案:46.(2022石家庄高二检测)曲线y=-1-x2与曲线y+|ax|=0(aR)的交点个数为.【解析】由y=-1-x2,y+|ax|=0,得-|ax|=-1-x2,即a2x2=1-x2,所以(a2+1)x2=1,解得x=1a2+1和x=-1a2+1,代入y=-|ax|,得y=-a21+a2,所以它们有2个交点.答案:2【一题多解】由y=-1-x2,得x2+y2=1(y0)表示半圆如图:由y+|ax|=0,得y=-|a|x|,表示过原点的两条射线,如图.所以由图象可知,它们有两个交点.答案:2三、解答题(每小题12分,共24分)7.已知点P(x0,y0)是曲线f(x,y)=0和曲
10、线g(x,y)=0的交点,求证:点P在曲线f(x,y)+g(x,y)=0(R)上.【证明】由于P是曲线f(x,y)=0和曲线g(x,y)=0的交点,所以P在曲线f(x,y)=0上,即f(x0,y0)=0,P在曲线g(x,y)=0上,即g(x0,y0)=0,所以f(x0,y0)+g(x0,y0)=0+0=0,故点P在曲线f(x,y)+g(x,y)=0(R)上.【拓展延长】证明曲线与方程关系的技巧解答本类问题的关键是正确理解并运用曲线的方程与方程的曲线的概念,明确两条原则,即若点的坐标适合方程,则该点必在方程的曲线上;若点在曲线上,则该点的坐标必适合曲线的方程.另外,要证明方程是曲线的方程,依据定义需完成两步:曲线上任意一点的坐标都是方程的解;以方程的解为坐标的点都在曲线上.二者缺一不行.8.当曲线y=1+4-x2与直线y=k(x-2)+4有两个相异交点时,求实数k的取值范围.【解析】曲线y=1+4-x2是以(0,1)为圆心, 2为半径的半圆,如图.直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC的斜率为k0,切线PC的方程为y=k0(x-2)+4.圆心(0,1)到直线PC的距离等于半径2,即|-1-2k0+4|1+k02=2,所以k0=512,直线PA的斜率k1=34,所以实数k的取值范围是512k34.关闭Word文档返回原板块