1、双基限时练(十七)1下列叙述正确的是()对数式logaNb(a0,a1)与指数式abN(a0,a1)是同一个关系式的两种不同的表达形式;当a0,a1时,logaNb与abN可以相互转化;若abN(a0,a1),则alogaNN成立;若MN,则lgMlgN.A BC D答案B2lg42lg5等于()A1 B2C1 D2解析lg42lg5lg4lg52lg(452)lg1002.答案B3若lgxlgya,则lg3lg3等于()A3a B.aC3a2 Da解析lg3lg333(lgxlg2)(lgylg2)3(lgxlgy)3a.答案A4若Plog23log34,Qlg2lg5,Me0,Nln1则正
2、确的是()APQ BQMCMN DNP解析由于Plog23log34log23log242Qlg2lg 5lg 101,Me01,Nln10,所以QM.答案B5若lgx与lgy互为相反数,则()Axy0 Bxy0Cxy1 Dxy1解析lgxlgy0,即lgxy0,xy1.答案C6已知alog32,则log382log36的值是()Aa2 B5a2C3a(1a)2 D3aa21解析log382log363log322(log32log33)3a2(a1)a2.答案A74lg23lg5lg的值为_解析原式4lg23lg5(lg1lg5)4lg24lg54(lg2lg5)4lg104.答案48设xl
3、og23,则_.解析法一:由xlog23得2x3,2x,.法二:22x122x321.答案9方程log3(x210)1log3x的解是_解析原方程可化为log3(x210)log33x.x2103x,解得x2,或x5.检验知,方程的解为x5.答案x510求下列各式的值:(1)lg25lg4;(2)log27log9;(3)log2(log216);(4)log1(32)解(1)lg25lg4lg(254)lg1002. 11已知lg20.3010,lg30.4771.求lg72,lg4.5的值解lg72lg(2332)3lg22lg330.301020.47711.8572.lg4.5lglg9lg22lg3lg220.47710.30100.6532.12已知loga(x24)loga(y21)loga5loga(2xy1)(a0,且a1),求log8的值解由对数的运算法则,可将等式化为loga(x24)(y21)loga5(2xy1),(x24)(y21)5(2xy1)整理,得x2y2x24y210xy90,配方,得(xy3)2(x2y)20,.log8log8log2321log22.