1、“无理方程”教案精品文档21.4无理方程(一)教学目标1. 知道无理方程、代数方程的概念,并会识别无理方程;2. 经历探索无理方程解法的过程,领会无理方程“有理化”的化归思想;3. 会解简单的无理方程,知道解无理方程需要检验,及如何检验。教学重点掌握简单的无理方程的解法教学难点了解无理方程产生增根的原因 教学方法带领学生类比学习,探究新知。教学过程问题1已知平面直角坐标系内的A、B两点。其中点A坐标,点B是轴上的点,且A、B两点间的距离等于5,求点B的坐标。解由点B在轴上,可设点坐标为,由两点间距离公式,得即 师述大家能谈谈方程的特点吗?学生回答这个方程的根号里含有未知数。 师述如果让你给这种
2、根号里含有未知数的新方程起个名,你会怎么称呼它?(停顿,让学生稍微思考一下)学生回答 这是根式方程,无理方程师述根式方程这个名称倒是挺形象的。那无理方程(停顿,让学生稍微思考一下)同学们不妨回顾一下数与式。我们都知道实数可分为有理数和无理数,有理数又可分为整数和分数(同时板书)。而代数式可分为有理式和无理式,有理式又可分为整式和分式。通过比较,我们可以看到代数式和实数分类结构相同,如下图所示 ,师述那我们现在来看方程的分类。我们学过的一元一次方程,二元一次方程(组),一元高次方程,都属于整式方程,前阶段我们还学过分式方程。由类比,我们把整式方程和分式方程统称有理方程,而我们刚才列出的方程就是无
3、理方程。师述我们给出无理方程的概念方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程。(同时让学生把书翻开P.40,把定义划下来)我们继续定义有理方程和无理方程统称代数方程。代数方程结构如下在黑板上写无理方程的定义时可写为含有未知数的方程叫做无理方程。问题2试判断下列方程中哪些方程是无理方程。(1) (2) (3) (4) (5) (6)(7) (8) 解(1)是一元一次方程,(3)是二元一次方程,都属于整式方程;(5)是分式方程,而(2)、(4)、(6)、(7)、 (8)都是无理方程,以上八个方程都是代数方程。师述现在,我们知道无理方程的概念了。接下来,该一起来探究无理方
4、程的解法了。我们不妨来研究问题2中的方程(2)。问题3解无理方程(2) 解方程两边平方,得整理得 师问请问同学们,你平方的目的是什么?学生回答两边平方去掉了根号,把无理方程化成了有理方程。师述同学们回答得非常好,通过平方我们把无理方程的求解化归到有理化的求解,显然有理方程我们是会解的。 同时板书 学生继续求解 师生共同探讨不是方程的解,那我们是不是方程解错了?学生稍作停留,回答说没有。但却是方程的解,这是为什么呢?(把问题抛给学生。)学生回答平方,平方把无理方程化为了有理方程,但是.,原方程中未知数允许取值的范围扩大了,如方程平方前未知数x的取值范围是,而方程平方后未知数x允许的取值范围是一切
5、实数,平方使未知数x的取值范围扩大了。所以也就产生了增根。师述:很好。看来由于解无理方程会产生增根。因此有检验的必要。现在我们就以方程为例,来进行检验。那怎样检验呢?停顿能像分式方程那样检验吗?.只能把解依次代入原方程的左右两边,加以检验。如果左=右,解是原方程的解,否则,解是原方程的增根,要舍去。师述老师带领学生在黑板上进行一次检验。检验当时,方程,右边=4,可知是方程的根; 当时,方程,右边=-1,而右边不可能是负数,可知是方程的增根,应舍去。所以,方程的解是 师问:通过刚才的探究,我们初步掌握了解无理方程的步骤。那现在我们一起把问题1中的无理方程解完好吗?学生解,教师准备好,然后投影。师
6、述那这个方程怎么没产生增根呢?学生回答方程平方前后未知数x的取值范围都是一切实数,没有变化,所以没有产生增根。归纳解简单无理方程的一般步骤,可用流程图表示为 开始 平方,去根号(无理方程有理化) 解有理方程 检验 是 否 原方程的解 是增根,舍去 写出原方程的解,结束课堂小结:本节课你的收获是什么?1 通过本节课的学习,你掌握了哪些知识?学生答知道了无理方程的概念,探究了其解法。解法中,通过平方将无理方程化归为有理化求解。我们还探究了无理方程产生增根的原因。教师补充前面我们学过的分式方程,通过去分母使分式方程整式化,也体现了化归的数学思想。2 你领悟了哪些常用数学思想与方法? 答类比法,化归思想。备用练习解问题2中的无理方程(8)解移项 两边平方,得整理得 检验是原方程的增根,舍去。而是原方程的解。布置作业完成练习册P.18-19习题21.4(1)板书设计ABCD挂例题,实物投影无理方程板书一 概念12根号内含有未知数的方程叫无理方程。二 解法1化归“无理方程” 平方 “有理方程”2注意点无理方程需检验解方程区域可擦写区域,小结归纳收集于网络,如有侵权请联系管理员删除