收藏 分销(赏)

工科物理大作业10-气体动理论教学提纲.doc

上传人:a199****6536 文档编号:3807062 上传时间:2024-07-19 格式:DOC 页数:16 大小:732.50KB
下载 相关 举报
工科物理大作业10-气体动理论教学提纲.doc_第1页
第1页 / 共16页
工科物理大作业10-气体动理论教学提纲.doc_第2页
第2页 / 共16页
工科物理大作业10-气体动理论教学提纲.doc_第3页
第3页 / 共16页
工科物理大作业10-气体动理论教学提纲.doc_第4页
第4页 / 共16页
工科物理大作业10-气体动理论教学提纲.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、工科物理大作业10-气体动理论精品资料 1010 气体动理论班号 学号 姓名 成绩 一、选择题(在下列各题中,均给出了4个5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1. 两种摩尔质量不同的理想气体,它们的压强、温度相同,体积不同,则下列表述中正确的是:A. 单位体积内的分子数相同; B. 单位体积中气体的质量相同;C. 单位体积内气体的内能相同;D. 单位体积内气体分子的总平均平动动能相同。 (A、D)知识点 理想气体状态方程及内能公式。分析与解答 根据理想气体状态方程,当气体的压强与温度相同时,单位体积内的分子数n相同。由理想气

2、体状态方程,得,即当气体压强与温度相同,但摩尔质量不同时,单位体积中气体的质量不相同。又由理想气体内能公式,结合状态方程,得,则有,可见当压强相同的两种理想气体的自由度相同(即为同结构分子)时,单位体积内气体的内能才会相同。理想气体分子的平均平动动能,则有,则当气体的压强相同时,单位体积内的气体分子的总平均平动动能相同。 2. 以a代表气体分子的方均根速率,r 表示气体的质量体密度。则由气体动理论可知,理想气体的压强p为:A. ; B. ; C. ; D. 。 (C) 知识点 ,分析与解答 由方均根速率的定义和题意有 (1)由理想气体状态方程 (2)由题意 (3)联立以上三式,则有 3. 对处

3、于平衡状态下的一定量某种理想气体,在关于内能的下述表述中,正确的是:A. 内能是所有分子平均平动动能的总和;B. 气体处于一定状态,就相应有一定的内能;C. 当理想气体状态改变时,内能一定随着变化;D. 不同的理想气体,只要温度相同,其内能也相同。 (B) 知识点 内能的概念及内能公式。分析与解答 内能就是反映理想气体宏观状态的一个重要的状态参数,气体处于一定状态,就相应有一定的内能;理想气体的内能是所有分子的各类动能(包括平动动能、转动动能)的总和。 由理想气体的内能公式,对一定量的理想气体,只有自由度i和温度T相同的理想气体,其内能才相同;对自由度一定的理想气体,内能只是温度的单值函数,若

4、只是压强p、体积V的状态变化,而温度T不变,内能同样也不会变化。 4. 对于麦克斯韦速率分布中最概然速率vp的正确理解是:A. vp是大部分气体分子具有的速率;B. vp是速率分布函数的最大值;C. vp是气体分子可能具有的最大速率;D. vp附近单位速率间隔内分子出现的概率最大。 (D) 知识点 最概然速率vp的物理意义。分析与解答 最概然速率的物理意义为“在一定温度下,在vp附近单位速率间隔内分子出现的概率最大”,而“分子速率分布函数取极大值时所对应的速率就是vp”。 气体分子可能具有的速率范围为0,只是如果把速率范围分成许多相等的小区间,则分布在vp所在区间的分子概率最大,而分子速率分布

5、中最大速率应是无穷大。 5. 在麦克斯韦速率分布中,vp为气体分子的最概然速率,np 表示在vp附近单位速率间隔内的气体分子数,设麦克斯韦速率分布曲线下的面积为S。若气体的温度降低,则A. vp变小,np不变,S变大; B. vp,np,S均变小;C. vp变小,np变大,S不变; D. vp,np均变大,S不变。 (C)图10-1知识点 速率分布曲线。分析与解答 , 按照麦克斯韦分布函数的归一化条件,麦克斯韦速率分布曲线下的总面积不变。当气体的温度T下降时,气体分子的最概然速率减小;由于曲线下的总面积S不变,分布曲线在宽度减小的同时,高度会增大,即此时,必升高(由图10-1也可看出),则也会

6、变大。 6. 一定量某理想气体贮于容器中,温度为T,气体分子的质量为m,则根据理想气体的分子模型和统计假设,分子速率在x轴方向的分量二次方的平均值为:A.; B.;C.; D. 。 (D)知识点 理想气体的统计假设。分析与解答 由理想气体的统计假设,有 又因为 所以 (1) 又由分子的平均平动动能的定义 (2)联立式(1)和式(2),则有 7. 某理想气体在平衡态(温度为T)下的分子速率分布曲线如图10-2所示,图中A、B两部分面积相等,则图中v0的正确判断为:A. 平均速率; B. 最概然速率; C. 方均根速率;D. 速率大于和小于的分子数各占总分子数的一半。 (D)图10-2知识点 速率

7、分布曲线的理解。 分析与解答 曲率分布曲线下的总面积 由题意知 而 即速率小于的分子数占总分子数的一半。 即速率大于的分子数占总分子数的一半。8. 在麦克斯韦速率分布律中,为速率分布函数,则速率的分子平均速率的表达式为:A. ; B. ;C. ; D. 。 (D) 知识点 表达方法及相关积分式的意义。分析与解答 速率的分子的平均速率表达式为 式中表示的分子的速率总和,表示的分子数的总和。 9. 两个容积相同的容器中,分别装有He气和H2气,若它们的压强相同,则它们的内能关系为:A. ; B. ;C. ; D. 无法确定。 (C)知识点 和分析与解答 由理想气体的状态方程与理想气体的内能公式,可

8、将内能表示为 He气和H2气容积相等,压强相同,它们的内能仅由自由度数i决定,He气体是单原子分子i=3,H2气是双原子分子i=5,则。 10. 容积固定的容器中,储有一定量某理想气体,当温度逐渐升高时,设分子的有效直径保持不变,则分子的平均自由程和平均碰撞频率的变化为:A. 、均增大; B. 、均减小;C. 、均不变; D. 不变,增大。 (D)知识点 平均自由能和平均碰撞频率。分析与解答 分子的平均自由程,d为分子直径,n为分子数密度。分子的平均碰撞频率与平均自由程的关系为 式中为分子的平均速率,。 根据题意,体积V不变,一定量的理想气体即气体质量m不变,单位体积中的分子数即分子数密度n不

9、变,分子的平均自由程不变。当温度升高时,分子的平均速率增大,导致增大。 二、填空题1. 一定量某理想气体处在平衡状态时,其状态可用 压强p, 温度T 和体积V 3个宏观状态量来表述。三者的关系(即状态方程)为 。知识点 状态量与状态方程。2. 理想气体压强的微观(统计)意义是:大量分子热运动、连续不断碰撞器壁的宏观表现;压强公式可表示为 。温度是:大量分子平均平动动能 的量度,其关系式为 。知识点 压强p和温度T的微观意义。3. 下列各式所表达的意义是:为 分子的平均平动动能 ;为 每个自由度上分配的平均动能 ;为 自由度为i的分子的平均动能 ;为 1mol自由度为i的分子的理想气体的内能 ;

10、为 摩尔自由度为i的分子的理想气体的内能 。知识点 各种能量的概念及表示4. 下面左侧列出了5个与气体分子的速率分布函数有关的表达式,右侧是其五种解释。请用连线的方法把对应关系表示出来。 分子的平均平动动能 分子的数密度 在间隔内分子的速率之和 分子的平均速率 在间隔内的分子数知识点 分布函数及相关表达式的意义。分析与解答 根据将所列表达式变换后再说明其物理意义。 分子的平均速率 在间隔内分子的速率之和 分子的平均平动动能 分子的数密度 在间隔内的分子数5. 一容器内贮有氧气,其压强,温度,其分子数密度 ;若在同样的温度下,把容器抽成的真空(这是当前可获得的极限真空度),则此时的分子数密度为。

11、知识点 应用及数值计算。分析与解答 由理想气体状态方程知 当,则此时分子数密度为 6. 由于热核反应,氢核聚变为氦核。在太阳中心氢核和氦核的质量百分比约为35和65,太阳中心处的温度约为,密度为,则氢核的压强Pa;氦核的压强Pa;太阳中心的总压强Pa。知识点 状态方程的应用,道尔顿定律。分析与解答 由状态方程,得 对氢核有 对氦核有 由道尔顿定律,总压强为 7. 2mol氢气(双原子分子)在时的分子平均平动动能J;平均总动能J;内能J。若将温度升高时,其内能增量J。知识点 平均平动动能、平均动能及内能的数值计算。分析与解答 H2是双原子分子气体,。平均平动动能为 平均总动能 内能 当温度升高1

12、时,其内能增量为 8. 当温度 K时,氧气分子的方均根速率等于其离开地球表面的逃逸速度11.2km/s。知识点 方均根速率的计算。分析与解答 分子的方均根速率为,当氧气分子的方均根速率等于其离开地球表面的逃逸速率时,即 可解得 图10-39. 同一温度下的氢气和氧气的速率分布曲线如图10-3所示,其中曲线为 氧 气的速率分布曲线; 氢 气的最概然速率较大;从图中可知,曲线气体的最概然速率为,则其方均根速率为,而曲线气体的最概然速率为。知识点 与的关系。分析与解答 气体分子速率分布曲线上最大值对应的速率是最概然速率,即反比于M,当温度一定时,摩尔质量M大的气体分子的最概然速率最小,摩尔质量M小的

13、气体分子的最概然速率大。所以氢气的最概然速率较大,而的速率分布曲线为氧气的。则对氧气,最概然速率,而 则得 其方均根速率 对氢气,其最概然速率为 10. 根据玻耳兹曼分布律,当温度T恒定时,处于一定速度区间的坐标区间的分子数与因子 成正比,总能量E愈高的状态,分子占有该状态的概率就 越小 ,因此,从统计观点看,分子总是优先占据 低能量 状态。知识点 玻耳兹曼能量分布规律。三、简答题试用统计观点说明:一定量的理想气体,当体积不变时,若温度升高,则压强将增大。解答 T升高,大量分子的平均平动动能增大,即增大,也增大,虽然n不变,但分子碰撞器壁的次数会增加,每次碰撞的冲量也增大,故压强p会增大。四、

14、计算与证明题1. 在容积为V = 210-3m3的容器内,盛有m = 0.01kg的氧气,其压强为p = 9.07104Pa。试求:(1)氧气分子的方均根速率;(2)单位体积内的分子数;(3)氧气分子的平均动能;(4)氧气分子的平均自由程和连续两次碰撞的平均时间间隔(已知氧分子的有效直径为2.910-10m)。分析与解答 (1)由理想气体的状态方程可得所以,氧气分子的方均根速率为 (2)由理想气体的状态方程可得(3)氧气为双原子分子,则其平均动能为 (4)分子的平均自由程为平均碰撞频率为 连续两次碰撞的平均时间间隔为2. 在容积为V的容器中,盛有质量的两种单原子理想气体,它们的摩尔质量分别为和

15、,处于平衡态时(温度为T),它们的内能均为E。试证明:此混合气体的压强.证明 单原子理想气体,。由题设条件,内能为即 而由理想气体状态方程得 , 按道尔顿定律有 证毕。3. 有N个气体分子,其速率分布函数为,() ,(,) 式中为已知常数,a为待求常数,试求:(1)作v分布曲线,并确定分布函数中的常数a;(2)速率大于和小于的气体分子数;(3)分子的平均速率。分析解答图10-4(1)v分布曲线如图10-4所示。由归一化条件有所以,(2)的气体分子数为 的气体分子数为 (3)由统计平均值的定义可得平均速率为4火星的逃逸速度为,其表面温度为240K;木星的逃逸速度为,其表面温度为130K。由此说明,为什么火星表面大气中96是CO2,而H2极少;而木星表面大气中76是H2,其余为He?(提示:计算相关气体的方均根速率加以分析。CO2的摩尔质量为,H2的摩尔质量为,He的摩尔质量为)分析与解答 在火星上,CO2与H2的方均根速率分别为:CO2的运动速率要远远小于火星的逃逸速度,而H2的运动速率更接近火星的逃逸速度,表明在火星上,H2更容易逃逸。而在木星上,H2与He的方均根速率分别为表明在木星上H2和He都不易逃逸。仅供学习与交流,如有侵权请联系网站删除 谢谢16

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服