1、新人教版六年级下册数学知识点精品文档一1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出);光有学过的0 1 3.4 是远远不够的.所以出现了负数;以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0);数轴上0左边的数叫做负数.若一个数小于0;则称它是一个负数.负数有无数个;其中有(负整数;负分数和负小数)负数的写法:数字前面 加负号“-”号; 不可以省略 例如:-2;-5.33;-45;-3、正数:大于0的数叫正数(不包括0);数轴上0右边的数叫做正数若一个数大于0;则称它是一个正数.正数有无数个;其中有(正整数;正分数和正小数) 正数的写法:数字前面
2、可以加正号“+”号;也可以省略不写.例如:+2;5.33;+45;4、0 既不是正数;也不是负数;它是正、负数的分界限负数都小于0;正数都大于0;负数都比正数小;正数都比负数大5、正负数轴:分界负正0分界 负数 0 正数 左边 右边6、比较两数的大小:利用数轴: 负数0正数 或 左边右边利用正负数含义:正数之间比较大小;数字大的就大;数字小的就小.负数之间比较大小;数字大的反而小;数字小的反而大 -(一)、折扣和成数1、折扣:用于商品;现价是原价的百分之几;叫做折扣.通称“打折”.几折就是十分之几;也就是百分之几十.例如八折=80;六折五=65解决打折的问题;关键是先将打的折数转化为百分数或分
3、数;然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 商品现在打八折 :现在的售价是原价的80商品现在打六折五:现在的售价是原价的652、成数:几成就是十分之几;也就是百分之几十.例如一成=10;八成五=80解决成数的问题;关键是先将成数转化为百分数或分数;然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加10今年小麦的收成是去年的八成五:今年小麦的收成是去年的85(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定;按照一定的比率把集体或个人收入的一部分缴纳给国家.(2)纳税的意义:税
4、收是国家财政收入的主要来源之一.国家用收来的税款发展经济、科技、教育、文化和国防安全等事业.(3)应纳税额:缴纳的税款叫做应纳税额.(4)税率:应纳税额与各种收入的比率叫做税率.(5)应纳税额的计算方法: 应纳税额=总收入税率 收入额=应纳税额税率 2、利率(1)存款分为活期、整存整取和零存整取等方法.(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社;储蓄起来;这样不仅可以支援国家建设;也使得个人用钱更加安全和有计划;还可以增加一些收入.(3)本金:存入银行的钱叫做本金.(4)利息:取款时银行多支付的钱叫做利息.(5)利率:利息与本金的比值叫做利率.(6)利息的计算公式:利息本金利率时
5、间 利率利息时间本金100(7)注意:如要上利息税(国债和教育储藏的利息不纳税);则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率) 税后利息=本金利率时间(1-利息税率)购物策略: 估计费用:根据实际的问题;选择合理的估算策略;进行估算.购物策略:根据实际需要;对常见的几种优惠策略加以分析和比较;并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处 一、圆柱 1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的. 圆柱也可以由长方形卷曲而得到.(两种方式:1.以长方形的长为底面周长;宽为高;2.以长方形的宽为底面周长;长为高.其中;第一种方式得到的圆柱体体积较
6、大.)2、圆柱的高是两个底面之间的距离;一个圆柱有无数条高;他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆.(2)侧面的特征:圆柱的侧面是一个曲面.(3)高的特征 :圆柱有无数条高4、圆柱的切割:横切:切面是圆;表面积增加2倍底面积;即S 增 =2r 竖切(过直径):切面是长方形(如果h=2R;切面为正方形);该长方形的长是圆柱的高;宽是圆柱的底面直径;表面积增加两个长方形的面积;即S增=4rh 5、圆柱的侧面展开图:沿着高展开;展开图形是长方形;如果h=2r;展开图形为正方形 不沿着高展开;展开图形是平行四边形或不规则图形 无论怎么展开都得不到梯形6、圆柱的
7、相关计算公式:底面积 :S底=r 底面周长:C底=d=2r 侧面积 :S侧=2rh 表面积 :S表=2S底+S侧=2r+2rh 体积 :V柱=rh 考试常见题型:已知圆柱的底面积和高; 求圆柱的侧面积;表面积;体积;底面周长 已知圆柱的底面周长和高;求圆柱的侧面积;表面积;体积;底面积 已知圆柱的底面周长和体积;求圆柱的侧面积;表面积;高;底面积 已知圆柱的底面面积和高;求圆柱的侧面积;表面积;体积 已知圆柱的侧面积和高; 求圆柱的底面半径;表面积;体积;底面积以上几种常见题型的解题方法;通常是求出圆柱的底面半径和高;再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积一个底面积油桶的表
8、面积 =侧面积两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥 1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的 圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离;与圆柱不同;圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆.(2)侧面的特征:圆锥的侧面是一个曲面.(3)高的特征 :圆锥有一条高.4、圆柱的切割:横切:切面是圆 竖切(过顶点和直径直径):切面是等腰三角形;该等腰三角形的高是圆锥的高
9、;底是圆锥的底面直径;面积增加两个等腰三角形的面积;即S增=2rh5、圆锥的相关计算公式:底面积 :S底=r 底面周长:C底=d=2r 体积 :V锥=rh 考试常见题型:已知圆锥的底面积和高;求体积;底面周长已知圆锥的底面周长和高;求圆锥的体积;底面积 已知圆锥的底面周长和体积;求圆锥的高;底面积以上几种常见题型的解题方法;通常是求出圆锥的底面半径和高;再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高;圆柱的体积是圆锥的3倍.2、圆柱与圆锥等底等体积;圆锥的高是圆柱的3倍. 3、圆柱与圆锥等高等体积;圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍. 4、圆柱
10、与圆锥等底等高 ;体积相差Sh题型总结 直接利用公式:分析清楚求的的是表面积;侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化 分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比 圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体;长方体与圆柱圆锥之间)横截面的问题浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积;等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体;正方体等体积转换问题:一个圆柱融化后做成圆锥;或圆柱中的溶液倒入圆锥;都是体积不变的 问题;注意不要乘以四、典型题: 1、一个圆柱的侧面展开是一个正方形;它的高是
11、底面直径的倍;即h=C=d,它的侧面积是S侧=h2、圆柱的底面半径扩大2倍;高不变;表面积扩大2倍;体积扩大4倍.3、圆柱的底面半径扩大2倍;高也扩大2倍;表面积扩大4倍;体积扩大8倍.4、圆柱的底面半径扩大3倍;高缩小3倍;表面积不变;体积扩大3倍.5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米;这个圆柱的体积是( )立方厘米;圆锥的体积是( )立方厘米圆锥和它等底等高的圆柱体积之比是1 :3;圆柱占1份;圆锥占3份;一共4份;题目中说了4份的和一共是48立方厘米. 圆锥占了4份中的1份;圆柱占了4份中的3份V锥:484=12(立方厘米) 或 48=12(立方厘米) V柱:484=12
12、(立方厘米) 123=36(立方厘米) 或 48=36(立方厘米)6、一个圆柱和它等底等高的圆锥体积之差是24立方分米;这个圆柱的体积是( )立方分米;圆锥的体积是( )立方分米.圆锥和它等底等高的圆柱体积之比是1 :3;圆柱占1份;圆锥占3份;1份和3份相差了2份;题目中说了相差24立方分米;2份就是24立方分米圆锥占了2份中的1份;圆柱占了2份中的3份V锥:242=12(立方分米) 或24=12(立方分米)V柱:242=12(立方分米) 123=36(立方分米) 或 24=36(立方分米)7、一个圆柱和一个圆锥;体积相等;底面积也相等;圆柱的高是2厘米;圆锥的高是( )厘米. V柱=V锥
13、V柱=V锥 S柱底h柱= S锥底h锥 S柱底h柱= S锥底h锥 h柱= h锥 S柱底= S锥底 2= h锥 4 = S锥底 h锥= 2 S锥底= 4 h锥=6 S锥底=128、一个圆柱和一个圆锥体积相等;高也相等;圆柱的底面积是4平方分米;圆锥的底面积是( )平方分米.9、一个圆锥和一个圆柱的底面积相等;体积的比是1:6.如果圆锥的高是3.6厘米;圆柱的高是( )厘米;如果圆柱的高是3.6厘米;圆锥的高是( )厘米.S锥底h锥1 S锥底h锥 1 S柱底h柱 6 S柱底h柱 6 h锥1 h锥 1 h柱 6 h柱 6 h柱1 = h锥6 h柱 = h锥6 h柱 = 3.66 h柱6 = h锥 h柱
14、 = 7.2 3.66 = h锥 10、一个圆柱体;把它的高截短3厘米;它的底面积减少94.2平方厘米;这个圆柱的体积减少了( )立方厘米.rC=S侧h r=C2 V=rh =94.23 =31.43.142 =3.1453 =31.4(厘米) =5(厘米) =235.5(立方厘米) 1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号;读作“比”.比号前面的数叫做比的前项;比号后面的数叫做比的后项.比的前项除以后项所得的商;叫做比值.(3)同除法比较;比的前项相当于被除数;后项相当于除数;比值相当于商.(4)比值通常用分数表示;也可以用小数表示;有时也可能是整数.(5)比的后项不能
15、是零.(6)根据分数与除法的关系;可知比的前项相当于分子;后项相当于分母;比值相当于分数值.2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外);比值不变;这叫做比的基本性质.3、求比值和化简比:求比值的方法:用比的前项除以后项;它的结果是一个数值可以是整数;也可以是小数或分数.根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比;即前、后项是互质的数.4、按比例分配:在农业生产和日常生活中;常常需要把一个数量按照一定的比来进行分配.这种分配的方法通常叫做按比例分配.方法:首先求出各部分占总量的几分之几;然后求出总数的几分之几是多少.5、比例的意义:表示两个比相等的
16、式子叫做比例.组成比例的四个数;叫做比例的项.两端的两项叫做外项;中间的两项叫做内项.6、比例的基本性质:在比例里;两个外项的积等于两个两个内项的积.这叫做比例的基本性质.7、比和比例的区别(1)比表示两个量相除的关系;它有两项(即前、后项);比例表示两个比相等的式子;它有四项(即两个内项和两个外项).(2)比有基本性质;它是化简比的依据;比例也有基本性质;它是解比例的依据.8、成正比例的量:两种相关联的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数的比值(也就是商)一定;这两种量就叫做成正比例的量;他们的关系叫做正比例关系.用字母表示=k(一定)9、成反比例的量:两种相关联
17、的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数的积一定;这两种量就叫做成反比例的量;他们的关系叫做反比例关系.用字母表示xy=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定;如果商一定;就成正比例;如果积一定;就成反比例.11、比例尺:一幅图的图上距离和实际距离的比;叫做这幅图的比例尺.12、比例尺的分类(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺13、图上距离:实际距离=比例尺 或 =比例尺实际距离比例尺=图上距离 图上距离比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)
18、确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离;写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同;大小不同.16、用比例解决问题:根据问题中的不变量找出两种相关联的量;并正确判断这两种相关联的量成什么比例关系;并根据正、反比例关系式列出相应的方程并求解.17、常见的数量关系式:(成正比例或成反比例)单价数量=总价 单产量数量=总产量 速度时间=路程 工效工作时间=工作总量 =数量 =数量 =时间 =工作时间=单价 =单产量 =速度 =工作效率18、已知图上距离和实际距离可以求比例尺.已知比例尺和图上距离可以求实际距离.已知比例尺和实际距离可以
19、求图上距离.计算时图距和实距单位必须统一.19、播种的总公顷数一定;每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数天数=播种的总公顷数 已知播种的总公顷数一定;就是每天播种的公顷数和要用的天数的积是一定的;所以每天播种的公顷数和要用的天数成反比例.20、判断下面各题的两个量是不是成比例;如果成比例;成什么比例?(1)订阅少年报的份数和钱数.因为 = 每份的钱数(一定)所以;订阅少年报的份数和钱数成正比例.(2)三角形的底一定;它的面积和高. 因为 =(一定)所以;它的面积和高成正比例.(3)图上距离一定;实际距离和比例尺.因为;实际距离比例尺=图上距离(一定)所以;实际距离和
20、比例尺成反比例.(4)一条绳子的长度一定;剪去的部分和剩下的部分.因为;剪去的部分和剩下的部分不存在比值或积一定的关系;所以;剪去的部分和剩下的部分不成比例.(5)圆的面积和它的半径不成正比例;因为圆的面积和它的半径的比值不一定;所以圆的面积和它的半径不成正比例.自行车里的数学: 前齿轮转数前齿轮齿数=后齿轮转数后齿轮齿数蹬一圈走的路程=车轮周长(蹬一圈;后轮转动的圈数)蹬一圈走的路程=车轮周长(前齿轮齿数:后齿轮齿数)48:281.71 48:24=2 48:20=2.4 48:182.67 48:16=3 48:143.43 40:281.43 40:241.67 40:20=2 40:1
21、82.22 40:16=2.5 40:142.86 前、后齿轮齿数相差大的;比值就大;这种组合走的就远;因而车速快;但骑车人较费力前、后齿轮齿数相差小的;比值就小;这种组合走的就近;因而车速慢;但骑车人较省力自行车跑的快慢与两个条件有关:1、前后齿轮齿数的比值.2、车轮的大小(合理)1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表放法盒子1盒子2130221312403无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”. 这个结论是在“任意放法”的情况
22、下, 得出的一个“必然结果”.类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子 如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体;把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式 利用公式进行解题: 物体个数鸽巣个数=商余数 至少个数=商+1 2、摸2个同色球计算方法. 要保证摸出两个同色的球;摸出的球的数量至少要比颜色数多1. 物体数颜色数(至少数1)1 极端思想: 用最不利的摸法先摸出两个不同颜色的球;再无论摸出一个什么颜色的球;都能保证一定有两个球
23、是同色的. 公式: 两种颜色:213(个)三种颜色:314(个)四种颜色:415(个)常见乘法计算(敏感数字) :254100 12581000加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子 0.875+ +0.8 0.433 230.375=+ =+ =33 =23=+ =+(+) =33 =23 ()=1+ =+1 =13 =232含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式 0.875+ 0.375 35 101=+ = = (36-1) = (100+1) =+ + = =36-1 =100+1= (+)+ (+) = ()()
24、 =5- =1+=1+1 =21 乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项) 1010.9-1 95.51.6-15.51.6 1010.9- 52+29-0.625 =101-1 =(95.5-15.5)1.6 =101- =52+29- =101-1 =801.6 =101-1 =52+29-1 =(101-1) =80016 =(101-1) =(52+29-1) =100 =100 =80 减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式18-0.375 1-0.75 12-(+0.4) 0.56125=18- =1- =12-(
25、+) =0.70.8125=18-(+) =1- =12- =0.7(0.8125)=18-1 =1- =12- =0.7100除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 数字换乘法式32002.50.4 27002.52.7 5900(2.55.9) 3333333333=3200(2.50.4) =27002.72.5 =59005.92.5 =11111333333=32001 =10002.5 =10002.5 =1111199999同级运算中;第一个数不能动;后面的数可以带着符号搬家 =11111(100000-1)1+- 2500.80.4 1-+ 290.250.
26、29=1-+ =2500.40.8 =1+- =290.290.25=1+ =1000.8 =2- =1000.25解方程方法一:消项(如果消3;方程两边就同时3 ;如果消3;方程两边就同时3)1:把方程里的“括号”全部去掉;两种去括号的方法任选其一 2:如果两边都有 几 , 要先消去其中一边的 几 (如果有“-几”;就把“-几”消去;如果没有“-几”;就把较小的消去掉)3:消去 “-几”; 消去“” 4:把这边的数字全部消掉;先消“+ -” 再消“” 最后消“” (注意:无论解到哪一步;数字+几 都要写成 几+数字) 解方程方法二:移项(3移到另一边就变成3;3移到另一边就变成3) 1:把方
27、程里的“括号”全部去掉;两种去括号的方法任选其一 2:如果两边都有 几 ,就把其中一边的 几 移到另一边 (如果有“-几”;就把“-几”移到另一边.如果没有“-几”;就把较小的移到另一边)3:把“-几”移到另一边;把 “”移到另一边”4:把这边的数字全部移到另一边;先移“+ -” 再移“” 最后移“” (注意:无论解到哪一步;数字+几 都要写成 几+数字)长度单位换算 km m dm cm mm 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 km m dm cm mm1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分
28、米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 L mL m dm cm1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升1立方米=1000升 1立方分米=1升 1立方厘米=1毫升 质量单位换算 t k 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 h min s1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 + - = ( ) r收集于网络,如有侵权请联系管理员删除