资源描述
五年级奥数
1、小数的巧算
2、数的整除性
3、质数与合数
4、约数与倍数
5、带余数除法
6、中国剩余定理
7、奇数与偶数
8、周期性问题
9、图形的计数
10、图形的切拼
11、图形与面积
12、观察与归纳
13、数列的求和
14、数列的分组
15、相遇问题
16、追及问题
17、变换和操作
18、逻辑推理
19、逆推法
20、分数问题
1.1小数的巧算(一)
年级 班 姓名 得分
一、填空题
1、计算 1.135+3.346+5.557+7.768+9.979=_____.
2、计算 1.996+19.97+199.8=_____.
3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.
4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.
5、计算
1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.
6、计算 2.894.68+4.686.11+4.68=_____.
7、计算 17.4837-17.4819+17.4882=_____.
8、计算 1.250.322.5=_____.
9、计算 754.7+15.925=_____.
10、计算 28.6767+32286.7+573.40.05=_____.
二、解答题
11、计算 172.46.2+27240.38
12、计算 0.00…01810.00…011
963个0 1028个0
13、计算
12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23
14、下面有两个小数:
a=0.00…0105 b=0.00…019
1994个0 1996个0
求a+b,a-b,ab,ab.
1.2小数的巧算(二)
年级 班 姓名 得分
一、真空题
1、计算 4.75-9.64+8.25-1.36=_____.
2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.
3、计算 (5.25+0.125+5.75)8=_____.
4、计算 34.58.23-34.5+2.7734.5=_____.
5、计算 6.250.16+2640.0625+5.26.25+0.62520=_____.
6、计算 0.035935+0.035+30.035+0.07610.5=_____.
7、计算 19.9837-199.81.9+19980.82=_____.
8、计算 13.59.9+6.510.1=_____.
9、计算 0.1250.250.564=_____.
10、计算 11.843-8600.09=_____.
二、解答题
11、计算32.14+64.280.53780.25+0.537864.280.75-864.280.1250.5378
12、计算 0.88812573+9993
13、计算 1998+199.8+19.98+1.998
14、下面有两个小数:
a=0.00…0125 b=0.00…08
1996个0 2000个0
试求a+b, a-b, ab, ab.
2.1数的整除性(一)
年级 班 姓名 得分
一、填空题
1、四位数“3AA1”是9的倍数,那么A=_____.
2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.
3、能同时被2、3、5整除的最大三位数是_____.
4、能同时被2、5、7整除的最大五位数是_____.
5、1至100以内所有不能被3整除的数的和是_____.
6、所有能被3整除的两位数的和是______.
7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.
8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.
9、42□28□是99的倍数,这个数除以99所得的商是_____.
10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.
二、解答题
1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,
所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?
12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?
13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?
14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
2.2数的整除性(二)
年级 班 姓名 得分
一、填空题
1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.
2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.
3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这
991个 991个
个多位数被7整除,那么中间方框内的数字是_____.
4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.
5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.
6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.
7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.
8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.
9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.
10、所有数字都是2且能被66……6整除的最小自然数是_____位数.
100个
二、解答题
11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?
12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?
13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?
14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.
3.1质数与合数(一)
年级 班 姓名 得分
一、填空题
1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.
2、最小的质数与最接近100的质数的乘积是_____.
3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.
4、在下式样□中分别填入三个质数,使等式成立.
□+□+□=50
5、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.
6、找出1992所有的不同质因数,它们的和是_____.
7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.
8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.
9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.
10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.
二、解答题
11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?
12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.
13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?
14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?
3.2质数与合数(二)
年级 班 姓名 得分
一、填空题
1、在1~100里最小的质数与最大的质数的和是_____.
2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.
3、把232323的全部质因数的和表示为,那么ABAB=_____.
4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.
5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.
6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.
7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.
8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.
9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.
10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。”他站起来,走到窗前,看了看楼下的孩子说:“有两个很小的孩子,我知道他们的年龄了。”主人家的楼号是_____ ,孩子的年龄是_____.
二、解答题
11、甲、乙、丙三位同学讨论关于两个质数之和的问题。甲说:“两个质数之和一定是质数”.乙说:“两个质数之和一定不是质数”.丙说:“两个质数之和不一定是质数”.他们当中,谁说得对?
12、下面有3张卡片 3 , 2 , 1 ,从中抽出一张、二张、三张,按任意次序排起来,得到不同的一位数、两位数、三位数.把所得数中的质数写出来.
13、在100以内与77互质的所有奇数之和是多少?
14、在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.
4.1约数与倍数(一)
年级 班 姓名 得分
一、填空题
1、28的所有约数之和是_____.
2、用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.
3、一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是_____.
4、李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.
5、两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____.
6、现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.
7、一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.
8、长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.
9、张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.
10、含有6个约数的两位数有_____个.
11、写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?
12、和为1111的四个自然数,它们的最大公约数最大能够是多少?
13、狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳米,黄鼠狼每次跳米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?
14、已知a与b的最大公约数是12,a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a,b,c共有多少组?
(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组)
4.2约数与倍数(二)
年级 班 姓名 得分
一、 填空题
1、把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.
2、幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人.
3、用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.
4、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.
5、一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____分钟又同时发第二次车.
6、动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.
7、这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.
8、能被3、7、8、11四个数同时整除的最大六位数是_____.
9、把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1, 那么至少要分成_____组.
10、210与330的最小公倍数是最大公约数的_____倍.
二、解答题
11、公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.
12、甲乙两数的最小公倍数除以它们的最大公约数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?
13、用、、分别去除某一个分数,所得的商都是整数.这个分数最小是几?
14、有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:
(1)说的不对的两位同学,他们的编号是哪两个连续自然数?
(2)如果告诉你,1号写的数是五位数,请找出这个数.
5.2带余数除法(二)
年级 班 姓名 得分
一、填空题
1、除107后,余数为2的两位数有_____.
2、27( )=( )……3.
上式( )里填入适当的数,使等式成立,共有_____种不同的填法.
3、四位数8□98能同时被17和19整除,那么这个四位数所有质因数的和是_____.
4、一串数1、2、4、7、11、16、22、29……这串数的组成规律,第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推;那么这串数左起第1992个数除以5的余数是_____.
5、222……22除以13所得的余数是_____.
2000个
6、小明往一个大池里扔石子,第一次扔1个石子,第二次扔2个石子,第三次扔3个石子,第四次扔4个石子……,他准备扔到大池的石子总数被106除,余数是0止,那么小明应扔_____次.
7、七位数3□□72□□的末两位数字是_____时,不管十万位上和万位上的数字是0,1,2,3,4,5,6,7,8,9中哪一个,这个七位数都不是101的倍数.
8、有一个自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.
9、在1,2,3,……29,30这30个自然数中,最多能取出_____个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数.
10、用1-9九个数字组成三个三位数,使其中最大的三位数被3除余2,并且还尽可能地小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是_____.
二、解答题
11、桌面上原有硬纸片5张。从中取出若干张来,并将每张都任意剪成7张较小的纸片,然后放回桌面,像这样,取出,剪小,放回;再取出,剪小,放回;……是否可能在某次放回后,桌上的纸片数刚好是1991?
12、一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到一个商是a(见短除式<1>);又知这个自然数被17除余4,所得的商被17除余15,最后得到一个商是a的2倍(见短除式<2>).求这个自然数.
8 所求自然数……余1
8 第一次商……余1
8 第二次商……余7
a
短除式<1>
17 所求自然数……余4
17 第一次商……余15
2 a
短除式<2>
13、某班有41名同学,每人手中有10元到50元钱各不相同.他们到书店买书,已知简装书3元一本,精装书4元一本,要求每人都要把自己手中的钱全部用完,并且尽可能多买几本书,那么最后全班一共买了多少本精装书?
14、某校开运动会,打算发给1991位学生每人一瓶汽水,由于商店规定每7个空瓶可换一瓶汽水,所以不必买1991瓶汽水,但是最少要买多少瓶汽水?
6.中国剩余定理
年级 班 姓名 得分
一、填空题
1、有一个数,除以3余数是1,除以4余数是3,这个数除以12余数是_____.
2、一个两位数,用它除58余2,除73余3,除85余1,这个两位数是_____.
3、学习委员收买练习本的钱,她只记下四组各交的钱,第一组2.61元,第二组3.19元,第三组2.61元,第四组3.48元,又知道每本练习本价格都超过1角,全班共有_____人.
4、五年级两个班的学生一起排队出操,如果9人排一行,多出一个人;如果10人排一行,同样多出一个人.这两个班最少共有_____人.
5、一个数能被3、5、7整除,若用11去除则余1,这个数最小是_____.
6、同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4人.参加队列训练的学生最少有_____人.
7、把几十个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份4个余3个.这堆苹果共有_____个.
8、一筐苹果,如果按5个一堆放,最后多出3个.如果按6个一堆放,最后多出4个.如果按7个一堆放,还多出1个.这筐苹果至少有_____个.
9、除以3余1,除以5余2,除以7余4的最小三位数是_____.
10、有一筐鸡蛋,当两个两个取、三个三个取、四个四个取、五个五个取时,筐内最后都是剩一个鸡蛋;当七个七个取出时,筐里最后一个也不剩.已知筐里的鸡蛋不足400个,那么筐内原来共有_____个鸡蛋.
二、解答题
11、有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?
12、求被6除余4,被8除余6,被10除余8的最小整数.
13、一盒围棋子,三只三只数多二只,五只五只数多四只,七只七只数多六只,若此盒围棋子的个数在200到300之间,问有多少围棋子?
14、求一数,使其被4除余2,被6除余4,被9除余8.
7.1奇数与偶数(一)
年级 班 姓名 得分
一、填空题
1、2,4,6,8,……是连续的偶数,若五个连续的偶数的和是320,这五个数中最小的一个是______.
2、有两个质数,它们的和是小于100的奇数,并且是17的倍数.这两个质数是_____.
3、100个自然数,它们的和是10000,在这些数里,奇数的个数比偶数的个数多,那么,这些数里至多有_____个偶数.
4、右图是一张靶纸,靶纸上的1、3、5、7、9表示射中该靶区的分数.甲说:我打了六枪,每枪都中靶得分,共得了27分.乙说:我打了3枪,每枪都中靶得分,共得了27分. 已知甲、乙两人中有一人说的是真话,那么说假话的是_____.
1 3 5 7 9
5、一只电动老鼠从右上图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?
.
A
6、一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不计分.考试结束后,小明共得23分.他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了_____道题.
7、有一批文章共15篇,各篇文章的页数分别是1页、2页、3页……14页和15页的稿纸,如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一页是奇数页码的文章最多有_____篇.
8、一本书中间的某一张被撕掉了,余下的各页码数之和是1133,这本书有_____页,撕掉的是第_____页和第_____页.
9、有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔的支数的2倍,钢笔支数是铅笔支数的,只有一只盒里放的水彩笔.这盒水彩笔共有_____支.
10、某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有_____人.
二、解答题
11、如下图,从0点起每隔3米种一棵树.如果把3块“爱护树木”的小木牌分别挂在3棵树上,那么不管怎么挂,至少有两棵挂牌树之间的距离是偶数(以米为单位). 试说明理由.
0
3
6
9
12
15
18
21
24
12、小地球仪上赤道大圆与过南北极的某大圆相交于A、B两点.有黑、白二蚁从A点同时出发分别沿着这两个大圆爬行.黑蚁爬赤道大圆一周要10秒钟,白蚁爬过南北极的大圆一周要8秒钟.问:在10分钟内黑、白二蚁在B点相遇几次?为什么?
B
A
13、如右图所示,一个圆周上有9个位置,依次编为1~9号.现在有一个小球在1号位置上,第一天顺时针前进10个位置,第二天逆时针前进14个位置.以后,第奇数天与第一天相同,顺时针前进10个位置,第偶数天与第二天相同,逆时针前进14个位置.问:至少经过多少天,小球又回到1号位置.
1
9
2
8
7
4
3
6
5
14、在右图中的每个 中填入一个自然数(可以相同),使得任意两个相邻的 中的数字之差(大数减小数),恰好等于它们之间所标的数字.能否办到?为什么?
3
5
4
2
1
7.2奇数与偶数(二)
年级 班 姓名 得分
一、填空题
1、五个连续奇数的和是85,其中最大的数是_____,最小的数是_____.
2、三个质数 、 、 ,如果 > >1, + = ,那么 =_____.
3、已知a、b、c都是质数,且a+b=c,那么abc的最小值是_____.
4、已知a、b、c、d都是不同的质数,a+b+c=d,那么abcd的最小值是_____.
5、a、b、c都是质数,c是一位数,且ab+c=1993,那么a+b+c=_____.
6、三个质数之积恰好等于它们和的7倍,则这三个质数为_____.
7、如果两个两位数的差是30,下面第_____种说法有可能是对的.
(1)这两个数的和是57.
(2)这两个数的四个数字之和是19.
(3)这两个数的四个数字之和是14.
8、一本书共186页,那么数字1,3,5,7,9在页码中一共出现了_____次.
9、筐中有60个苹果,将它们全部取出来,分成偶数堆,使得每堆的个数相同,则有_____种分法.
10、从1至9这九个数字中挑出六个不同的数,填在下图所示的六个圆圈内,使任意相邻两个圆圈内数字之和都是质数.那么最多能找出_____种不同的挑法来.(六个数字相同,排列次序不同算同一种)
二、解答题
11、在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?
1
2
3
4
5
6
7
8
9
1 2 3 4 5 6 7 8 9
12、能不能在下式:
1 2 3 4 5 6 7 8 9=10的每个方框中,分别填入加号或减号,使等式成立?
13、在八个房间中,有七个房间开着灯,一个房间关着灯.如果每次同时拨动四个房间的开关,能不能把全部房间的灯关上?为什么?
14、一个工人将零件装进两种盒子中,每个大盒子装12只零件,每个小盒子装5只零件,恰好装完.如果零件一共是99只,盒子个数大于10,这两种盒子各有多少个?
8.1周期性问题(一)
年级 班 姓名 得分
一、填空题
1、某年的二月份有五个星期日,这年六月一日是星期_____.
2、1989年12月5日是星期二,那么再过十年的12月5日是星期_____.
3、按下面摆法摆80个三角形,有_____个白色的.
……
4、节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.
5、时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.
6、把自然数1,2,3,4,5……如表依次排列成5列,那么数“1992”在_____列.
第一列
第二列
第三列
第四列
第五列
1
2
3
4
5
9
8
7
6
10
11
12
13
14
18
17
16
15
…
…
…
…
…
…
…
…
…
7、把分数化成小数后,小数点第110位上的数字是_____.
8、循环小数与.这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.
9、一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,
……共有1991个数.
(1)其中共有_____个1,_____个9_____个4;
(2)这些数字的总和是_____.
10、777……7所得积末位数是_____.
50个
二、解答题
11、紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如89=72,在9后面写2,92=18,在2后面写8,……得到一串数字:
1 9 8 9 2 8 6……
这串数字从1开始往右数,第1989个数字是什么?
12、1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?
13、设n=222……2,那么n的末两位数字是多少?
1991个
14、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?
8.2周期性问题(二)
年级 班 姓名 得分
一、填空题
1、1992年1月18日是星期六,再过十年的1月18日是星期_____.
2、黑珠、白珠共102颗,穿成一串,排列如下图:
……
这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.
3、流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑再1个白,然后再依次是5红,4黄,3绿,2黑,1白,……继续下去第1993个小珠的颜色是_____色.
4、把珠子一个一个地如下图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在_____袋中.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
……
5、数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_____行第_____列.
1 4 7 10 13
28 25 22 19 16
31 34 37 40 43
58 55 52 49 46
………………………………
………………………………
6、数化成小数后,小数点后面第1993位上的数字是_____.
7、成小数后,小数点后面1993位上的数字是_____.
8、一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_____和_____这两个数字上.
9、991个9与1990个8与1989个7的连乘积的个位数是_____.
10、式(367367+762762) 123123的得数的尾数是_____.
二、解答题
11、乘积1234……19901991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?
12、有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?
13.
共产党好共产党好共产党好……
社会主义好社会主义好社会主义好……
上表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_____.
14、甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_____厘米.
9.1图形的计数(一)
展开阅读全文