收藏 分销(赏)

年产98万吨异丙醇装置丙烯精制工段工艺设计脱乙烷样本.doc

上传人:精*** 文档编号:3656399 上传时间:2024-07-12 格式:DOC 页数:46 大小:932.54KB
下载 相关 举报
年产98万吨异丙醇装置丙烯精制工段工艺设计脱乙烷样本.doc_第1页
第1页 / 共46页
年产98万吨异丙醇装置丙烯精制工段工艺设计脱乙烷样本.doc_第2页
第2页 / 共46页
年产98万吨异丙醇装置丙烯精制工段工艺设计脱乙烷样本.doc_第3页
第3页 / 共46页
年产98万吨异丙醇装置丙烯精制工段工艺设计脱乙烷样本.doc_第4页
第4页 / 共46页
年产98万吨异丙醇装置丙烯精制工段工艺设计脱乙烷样本.doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

1、年产9.8万吨异丙醇装置丙烯精制工段工艺设计-脱乙烷塔部分摘 要丙烯是石油化工原料之一,在原油加工中含相关键作用。由裂解气净化和分离工段丙烯精馏塔分离出丙烯除了用于生产聚丙烯外,还大量地作为生产丙烯腈,丁醇,辛醇,环氧丙烷,异丙醇等产品关键原料。为了愈加好提升生产能力,本着投资少,能耗低,效益高想法,本设计依据设计任务书中确定生产任务进行,年产9.8万吨异丙醇,开工周期为8000小时/年,原料组成为乙烷、丙烯、丙烷、异丁烷,其中丙烯含量为74.1%,按其各组分沸点和相对挥发度不一样使各组分分离。因为对丙烯纯度要求极高,本文设计精馏塔塔板数较多,丙烯塔较高。最终以优化后精馏塔结果为基础,确定了该

2、塔设备参数,塔径,浮阀塔盘,塔高,热负荷,从而设计了塔底再沸器,塔顶冷凝器和塔体关键设备。步骤简单,投资较少,操作较为简单,基础能够满足丙烯优等品工业生产。本设计采取多组分精馏,按挥发度递减步骤方案,两塔步骤设计即先经过脱乙烷塔塔顶分离出乙烷,再由丙烯塔精馏塔塔顶得到丙烯,其纯度为93.5%以上,丙烯作为产品出装置为生产异丙醇提供原料,塔底丙烷可作为商品出售或作为烧火油。设塔设备通常分为级间接触式和连续接触式两大类。前者代表是板式塔,后者代表则为填料塔,在多种塔型中,目前应用最广泛是筛板塔和浮阀塔。设计时依次进行了物料衡算,热量衡算,塔结构相关工艺计算,换热设备计算及隶属设备选型,并依据设计数

3、据分别绘制了自控步骤图,设备选型方面关键根据现场实际,并兼顾工艺控制要求和经济合理性。伴随优异控制技术兴起,关键控制指标由定值控制向区间控制转变,调整变量和控制变量关系由单对单向多变量预估控制转变。它是装置控制技术发展方向,正在逐步普及。为了为装置以后上优异控制提供方便,我们在设计时,注意为塔顶温度,塔底温度,回流量等指标保留较大操作弹性。关键词:丙烯;脱乙烷塔;热量衡算;物料衡算;丙烯精馏塔。Annual output of 98,000 tons refined isopropyl alcohol propylene Process Design Section - Deethanizin

4、g TowerAbstractPropylene is one of raw materials for Petrochemical industry,it occupies an important place in the processing of crude oil. Rectifying column purified and seprated pyrolysis gas to get propylene that largely uses to product principal raw material of the acrylonitrile, butyl alcohol, o

5、ctyl alcohol, propylene epoxide and isopropanol.In order to improve production capacity with low investment and power,high benifit,Title I design production capacity is 98,000 tons annual output of isopropyl alcohol, started a period of 8,000 hours / year, material composition of ethane, propylene,

6、propane, butane, propylene is 74.1% in material, boiling point of each component and its relative volatility differences of degree of separation of each component. Due to high propylene purity requirement, this paper design the column plate number is more, the propylene tower is higher. Finally base

7、d on the results of optimized distillation, determined the equipment parameters of the tower, tower diameter, float valve tray, high tower, heat load, so as to design the bottom reboiler, the overhead condenser and tower body of the main equipment. Simple process, less investment, the operation is r

8、elatively simple, basic can satisfy the industrial production of propylene classy article.The design uses a multi-component distillation, the process by decreasing volatility program, process design the two towers that is, first isolated by de-ethane ethane tower, tower distillation top separated fr

9、om the ethane , top of the propylene tower geit that propylene, the purity of 93.5%, and propylene as the product of a device to provide raw materials production and isopropanol, the bottom of the propane can be sold as a commodity or as fires, oil. A tower equipment generally divided into two types

10、: contact and continuous contact between level. Is the former representative of the plate column, the latter represents the packed tower, in all kinds of tower, currently the most widely used is the sieve plate tower and float valve tower.In turn the design of the material balance, heat balance, the

11、 tower structure of the relevant process calculation, the calculation of heat transfer equipment and ancillary equipment selection, and the data were plotted according to the design automation flow, selection of equipment in accordance with terms of the main site practical, taking into account the r

12、equirements of process control and economic rationality. With the rise of advanced control technology, the key control target range from the control value control to change, adjust the relationship between variables and control variables by a single pair of one-way transformation of multivariable pr

13、edictive control. It is the device controlling the direction of technology development, is gradually spread. In order for the device to facilitate future advanced control, we design, attention to tower top temperature, the bottom of the column temperature and flow indicators are back to keep a large

14、 operation flexibility.Key words: propylene ,de-ethane tower, heat balance, material balance, propylene distillation column.目 录摘 要IAbstractII1 概述11.1中国化工工艺发展11.2丙烯性质及用途11.3丙烯起源及丙烯生产在化工生产中地位11.4 丙烯精制生产方法确实定21.5 丙烯精制工艺步骤叙述21.6丙烯发展前景31. 7 丙烯生产新技术现实状况及发展趋势32 丙烯精制装置物料衡算42.1确定关键组分42.2脱乙烷塔物料衡算42.2.1 脱乙烷塔进料

15、量及进料组成42.2.2 脱乙烷塔塔顶及塔底流量及组成52.2.3 脱乙烷塔物料平衡62.3 丙烯塔物料衡算62.3.1 丙烯塔进料量及进料组成62.3.2 丙烯塔塔顶及塔底流量及组成72.3.3 丙烯塔物料平衡83 脱乙烷塔和丙烯塔精制工艺条件确实定93.1脱乙烷工艺条件确实定93.1.1操作压力确实定93.1.2 回流温度确实定103.1.3塔顶温度计算103.1.4 塔底温度计算113.1.5 进料温度计算123.1.6 脱乙烷塔操作条件汇总123.2丙烯塔工艺条件确实定133.2.1 操作压力确实定133.2.2 塔顶温度计算143.2.3 塔底温度计算143.2.4 进料温度计算14

16、3.2.5 丙烯塔操作条件汇总154 脱乙烷塔和丙烯塔塔板数确实定164.1 脱乙烷塔塔板数计算164.1.1 最小回流比计算164.1.2 最少理论塔板数计算174.1.3 理论塔板数和实际回流比确实定184.1.4 实际塔板数确实定184.1.5 实际进料位置确实定194.1.6 脱乙烷塔塔板数计算结果汇总204.2 丙烯塔塔板数计算204.2.1 最小回流比计算204.2.2 最少理论塔板数计算224.2.3 理论塔板数和实际回流比确实定224.2.4 实际塔板数确实定234.2.5 进料位置确实定234.2.6 丙烯塔塔板数计算结果汇总245 热量衡算255.1 脱乙烷塔热量衡算255

17、.1.1 脱乙烷塔再沸器热负荷计算255.1.2 脱乙烷塔冷凝器热负荷计算275.2丙烯塔热量衡算285.2.1再沸器热负荷范围285.2.2 丙烯塔冷凝器热负荷计算30结 论1参考文件2谢 辞3 1 概述1.1中国化工工艺发展中国石油工业含有一定水平,但还是一个发展中国家,摆在我们石油工作者面前任务是繁重。炼油工业要对现有炼油厂进行技术改造,继续坚持“自力更生,革新挖潜,全方面提升,综合利用,大搞化工原料,赶超世界优异水平”发展方针。要立足现有基础,搞好一、二次加工和系统工程配套,扩大综合生产能力;要革新工艺,革新技术,革新设备,把老装置开出新水平;要发展加氢技术,发展新型催化剂和添加剂,全

18、方面提升产品质量,增加品种;要开展综合利用,大搞三次加工,增产有机化工原料;要充足利用热能,大力降低消耗,各项经济技术指标要创出新水平;要治理“三废”,保护环境,为实现赶超世界优异水平而奋斗。1.2丙烯性质及用途化学式C3H6,结构简式为CH3-CH=CH2,烯烃同系列中第二个组员,是关键有机化工原料,丙烯常温下为无色、无臭、稍带有甜味气体。易燃,爆炸极限为2%11%。不溶于水,溶于有机溶剂。分子量42.08,密度5.139kg/m(20/4),冰点-185.3,沸点-47.4。液态时相对密度为0.5193;易液化,临界温度为920C,临界压力为4.56MPa;遇热源和明火有燃烧爆炸危险,该气

19、体比空气重,能在较低处扩散到相对远地方,燃烧会产生一氧化塔、二氧化碳等气体,高浓度丙烯对人有麻醉作用,浓度较低时,对眼睛和皮肤有刺激作用。丙烯是三大合成材料基础原料,关键用于生产丙烯腈、异丙烯、丙酮和环氧丙烷等。丙烯和乙烯共聚生成乙丙橡胶。丙烯和氯和水起加成反应,生产环氧丙烷,加水丙二醇。丙烯在酸性催化剂存在下和苯反应,生成异丙苯 C6H5CH(CH3 )2,丙烯在催化剂存在下和氨和空气中氧起氨氧化反应,生成丙烯腈,丙烯在高温下氯化,生成烯丙基氯CH2=CHCH2Cl。本文利用丙烯和硫酸起加成反应,生成异丙基硫酸,后者水解生成异丙醇,但因为所用原料丙烯含量为74.1%,需精制后丙烯含量为93.

20、5%以上才可作异丙醇生产原料。1.3丙烯起源及丙烯生产在化工生产中地位丙烯关键经过石油加工取得,丙烯精制产品中,聚丙烯、丙烯腈需求旺盛,尤其是聚丙烯需求高于总体平均水平为6.1%。亚洲地域需求年均增加率5.6%,北美5.8%,西欧3.8%。依据新装置增设计划,中东地域从110万吨提升为240万吨,增幅为14.9%。亚洲地域新增能力将达340万吨,增幅为3.2%。中国是生产能力增幅最高国家,同期能力将从370万能胶和增加到620万吨,年均增幅达9.2%。日本年均增加率仅为2.2%。1.4 丙烯精制生产方法确实定因为原料中和常压沸点相近,全部在40以下,常压下分离这两个组分需采取深冷方法,使用制冷

21、剂,工艺步骤复杂,隶属设备多,设备投资费用加大,依据烃沸点随压力增加而升高特点,采取高压分离方法,用冷却水即可满足工艺要求,所以本设计采取常温加压分离方法。步骤安排有两种,一个是相对挥发度递减次序步骤,另一个是对挥发度递增次序步骤,本设计采取相对挥发度递减次序步骤分离出丙烯。图1-1 工艺步骤比较1.5 丙烯精制工艺步骤叙述丙烯含量为74.1%饱和液体原料(86,4.05Mpa),定量进入脱乙烷塔、经精馏处理该塔轻关键组分乙烷经过冷却(35,3.9Mpa)作为塔顶产品在塔顶引出(35,3.9Mpa),另一部分塔顶馏分经过冷却作为回流液返回脱乙烷塔(35,3.9Mpa)。脱乙烷塔塔底馏分经再沸器

22、加热(86,4.1Mpa)深入脱除轻关键组分后进入脱丙烯塔(44,1.75Mpa),经精馏处理该塔轻关键组分丙烯在塔顶经过冷却(35,1.6Mpa),在塔顶引出作为合成异丙醇原料(35,1.6Mpa),另一部分塔顶馏分回流返回脱丙烯塔(35,1.6Mpa),重关键组分丙烷则在塔底引出(52,1.8Mpa)。工艺步骤见附录中“丙烯精制工段工艺步骤图”共1张。1.6丙烯发展前景丙烯用量最大是生产聚丙烯,另外丙烯可制丙烯晴、异丙醇、苯酚和丙酮、丁醇和辛醇、丙烯酸及其脂类和制环氧丙烷和丙二醇、环氧氯丙烷和合成甘油等。多年来,因为丙烯下游产品快速发展,极大促进了中国丙烯需求量快速增加。到,中国将不停新增

23、大型乙烯生产装置,同时炼厂生产能力还将继续扩大,这将增加丙烯产出。估计,乙烯联产丙烯生产能力将达成约722万吨/年,丙烯总生产能力将达成1080万吨/年。乙烯装置联产丙烯占丙烯总供给百分比将深入提升。但同期下游装置对丙烯需求量年均增加速度将达成5.8%,丙烯资源供给略微担心。到,中国丙烯表观消费量将抵达1049万吨。从当量需求来看,丙烯供需矛盾十分突出。到,丙烯当量需求年均增加率将达成7.6%,超出丙烯生产能力增加速度。到,中国对丙烯当量需求将达成1905万吨,供需缺口将达成825万吨,到时将还有大量丙烯衍生物进口,中国丙烯开发利用前景宽广。因为聚丙烯(PP)需求快速增加,亚洲丙烯市场正逐步趋

24、于供给短缺。在以后中,将有大量以乙烷为原料裂解装置生产能力逐步建立起来,市场供给丙烯原料。实际上,从全球范围来说,丙烯并不短缺,但从亚洲情景来看,以后几年中亚洲丙烯需要关键来自北美,北美估量有100万吨/年裂解生产能力,因为现在港口限制,其中约50万吨/年丙烯出口。1.7 丙烯生产新技术现实状况及发展趋势现在增产丙烯新技术研究关键集中在四个方面。一是改善FCC等炼油技术,挖掘现有装置潜力,增产丙烯FCC装置升级技术;二是充足利用炼油及乙烯裂解副产品C4-8等资源,转化为乙烯、丙烯低碳烯烃裂解技术、烯烃歧化技术;三是丙烷脱氢技术;四是以天然气、煤等为原料,生产乙烯、丙烯甲醇制烯烃技术等。2 丙烯

25、精制装置物料衡算2.1确定关键组分按多组分精馏确定关键组分;挥发度高丙烯作为轻关键组分在塔顶分出;挥发度低丙烷作为重关键组分在塔底分出。2.2脱乙烷塔物料衡算 脱乙烷塔进料量=2.2.1 脱乙烷塔进料量及进料组成年处理量9.8万吨,年工作时间8000小时,则原料质量流量为F=(生产任务消耗定额1000)/(8000脱乙烷回收率丙烯塔回收率进料中丙烯浓度)年处理量9.8万吨,年工作时间8000小时原料质量流量为Fw=(980000.831000)/(800094%97%74.1%)=15048.61(kg/h)计算示例:以乙烷为例,进行原料组成及流量换算:乙烷质量流量:Fwc2=15048.61

26、2.7%=406.31(kg/h)乙烷摩尔数:406.31/30=13.5437kmol/h表2-1 原料中脱乙烷塔浓度组成kg/hWt%kmol/hmol%摩尔质量(kg/kmol)C2406.312.713.54373.7930C3=11150.6974.1265.492574.2942C3o3310.6922.075.243121.0544iC4o180.581.23.11350.875815048.61100355.6918100由上表可见原料摩尔流量为: Fw=355.6918 ( kmol/h )2.2.2 脱乙烷塔塔顶及塔底流量及组成选乙烷为轻关键组分,丙烯作为重关键组分,依据产

27、品质量指标,脱乙烷塔顶72;脱乙烷塔底0.1,丙烯在塔顶产品中含量28%(mol%),进行清楚分割物料衡算,物料衡算图见下图。图2-1 脱乙烷塔物料衡算图(1) 计算塔顶馏出液量D和塔底釜液量W列于下表。表2-2 塔顶馏出液量D和塔底釜液量W分布组分进料F(kg/h)塔顶馏出液D(kg/h)塔底釜液W(kg/h)C2406.31406.31-0.001W0.001wC3=11150.690.28D11150.69-0.28DC3o3310.6903310.69iC4o180.580180.5815048.61DW列全塔物料衡算式: 15048.61=D+W406.31-0.001W +0.28

28、D=D解得: D=543.42(kg/h)W=14504.436(kg/h)表2-3 塔顶馏出液量D和塔底釜液量W计算结果组分进料F(kg/h)塔顶馏出液D(kg/h)塔底釜液W(kg/h)C2406.31391.80614.504C3=11150.69152.15810998.532C3o3310.6903310.69iC4o180.580180.5815048.61543.4214504.436(2) 求出塔顶及塔底产品量及组成。表2-4 塔顶及塔底产品量及组成组分塔顶馏出液塔底釜液kg/hWt%kmol/hmol%kg/hWt%kmol/hmol%C2391.80672.0013.060

29、278.2614.5040.10.48350.142C3=152.15828.003.622821.7410998.53275.83261.869879.86C3o00003310.6922.8375.243022.08iC4o0000180.581.253.11340.914543.4210016.683010014504.436100340.70971002.2.3 脱乙烷塔物料平衡脱乙烷塔物料平衡数据见下表表2-5 脱乙烷塔物料平衡数据组分进料塔顶馏出液塔底釜液kg/hWt%kmol/hmol%kg/hWt%kmol/hmol%kg/hWt%kmol/hmol%C2406.312.713

30、.5443.79391.8067213.060278.2614.5040.10.48350.142C3=11150.6974.1265.4974.29152.158283.622821.7410998.575.8261.8779.86C3o3310.692275.24321.0500003310.6922.875.24322.08iC4o180.581.23.11340.870000180.581.253.11340.91415048.61100357.39100543.4210016.68310014504.4100340.711002.3 丙烯塔物料衡算2.3.1 丙烯塔进料量及进料组成丙

31、烯塔以脱乙烷塔底物料为原料,进行原料组成及流量换算:原料摩尔流量为 F=15048.61(kmol/h ) 原料各组分组成及流量见下表。表2-6 丙烯塔进料中各组份量及组成组成kg/hWt%kmol/hmol%摩尔质量(kg/kmol)C214.5040.10.48350.1430C3=10998.53275.83261.869879.8642C3o3310.6922.8375.243022.0844iC4o180.581.253.11340.915814504.436100340.70971002.3.2 丙烯塔塔顶及塔底流量及组成选丙烯为轻关键组分,丙烷为重关键组分,依据产品质量指标,丙烯

32、塔顶 93.5;丙烯塔底 93;丙烯塔顶0.5进行清楚分割物料衡算,物料衡算图见图2-2图2-2 丙烯塔物料衡算图(1)计算塔顶馏出液量D和塔底釜液量W列于下表。表2-7 塔顶馏出液量D和塔底釜液量W分布组分进料F(kg/h)塔顶馏出液D(kg/h)塔底釜液W(kg/h)C214.50414.5040C3=10998.53210998.532-0.005 w0.005 wC3o3310.693310.69-0.93 w0.93wiC4o180.580180.5814504.436DW计算结果见下表表2-8 塔顶馏出液量D和塔底釜液量W计算结果组分进料F(kg/h)塔顶馏出液D(kg/h)塔底釜

33、液W(kg/h)C214.50414.5040C3=10998.53210984.64113.891C3o3310.69727.0072583.683iC4o180.580180.5814504.43611726.2822778.15414504.436=D+W0.005w +0.93w +180.58=W解得: D=11726.282(kg/h)W=2778.154(kg/h)2.3.3 丙烯塔物料平衡求出塔顶及塔底产品量及组成以下表。表2-9 塔顶及塔底产品量及组成组分塔顶馏出液塔底釜液kg/hWt%kmol/hmol%kg/hWt%kmol/hmol%C214.5040.1240.483

34、50.1740000C3=10984.64193.68261.539193.8913.8910.500.3310.531C3o727.0076.2016.52295.932583.68393.0058.72094.46iC4o180.5803.11340180.586.53.11345.0111726.282100281.65891002778.15410062.1644100丙烯塔物料平衡数据见下表表2-10 丙烯塔物料平衡组分进料塔顶馏出液塔底釜液kg/hWt%kmol/hmol%kg/hWt%kmol/hmol%kg/hWt%kmol/hmol%C214.5040.10.48350.14

35、14.5040.1240.48350.1740000C3=10998.5375.83261.53979.8610984.6493.68261.539193.8913.8910.50.3310.531C3o3310.6922.8316.522922.08727.0076.216.52295.932583.6839358.7294.46iC4o180.581.253.11340.91180.5803.11340180.586.53.11345.0114504.44100281.65910011726.28100281.65891002778.15410062.1644100 3 脱乙烷塔和丙烯塔精

36、制工艺条件确实定3.1脱乙烷工艺条件确实定3.1.1操作压力确实定塔顶采取水作为冷却剂,设水温为25,冷凝器冷凝液出口温度比水温度高10,则回流罐中冷凝液温度为35。脱乙烷塔顶冷凝器为全凝器,则回流罐中冷凝液温度为泡点,所以采取泡点方程计算回流罐压力。泡点就是多组分混合液开始沸腾,产生第一个气泡温度。当混合液处于泡点时,各组分均服从带入得或式中 yi 任意组分i在气相中摩尔分数;xi 任意组分i在液相中摩尔分数;ki 相平衡常数。图3-1脱乙烷塔顶示意图按上式求压力时需用试差法。式中xA,xB,xCxn均为已知,所以,在试差时,可先在泡点温度,查出各组分在假设压力下K值,若1说明所设压力偏高,

37、ki值太小,若1说明压力偏低,ki值太大,经反复假设压力,并求出对应kixi直到满足为止,此时压力即泡点时回流罐压力。依据冷凝液泡点,假设回流罐压力,由p-T-k图查得液相各组分平衡常数,计算过程及结果列表以下表表3-1 液相各组分平衡常数计算过程及结果组分xi=yDiT=35,P=3.8mpaT=35,P=3.5mpaT=35,P=3.9mpayi =kixiyi =kixiyi =kixi乙烷0.78261.210.939121.260.99861.180.9235丙烯0.21740.480.10440.510.11090.460.06739累计11.04351.1090.9909如上,当

38、回流罐压力为3.9 MPa时,满足归一条件:平衡汽相组成之和=0.99091,故回流罐压力为3.9 MPa。设塔顶到回流罐压力差为0.1MPa,则塔顶压力P顶4.0MPa;塔顶到塔釜压力降为0.1MPa,则塔釜压力P底4.1MPa;进料口压力取塔顶压力和塔釜压力平均值,故设进料压力P进4.05MPa。3.1.2 回流温度确实定回流液温度即为全凝器冷凝温度,T回=353.1.3塔顶温度计算塔顶为饱和汽相,故应采取露点方程计算塔顶温度。露点就是多组分混合液开始冷凝,产生第一个液滴温度。当混合液处于泡点时,各组分均服从带入 得 式中 yi 任意组分i在气相中摩尔分数;xi 任意组分i在液相中摩尔分数

39、;ki 相平衡常数。按上式求露点时也需用试差法。式中yA,yB,yC.yn均为已知,所以,在试差时,可先假定一个露点温度,查出各组分在该温度下K值。若1说明所设温度偏低,ki值太小,若1说明温度偏高,ki值太大,经反复假设温度,并求出对应直到满足为止,此时温度即露点。在塔顶压力下,假设塔顶露点温度,由p-T-k图查得汽相各组分平衡常数,计算过程及结果列表以下。表3-2 塔顶压力下不一样温度平衡常数计算过程及结果组分yi =yDiP=4.0MPa,设T=45P=4.0 Mpa,设T=43P=4.0 MPa,设T=39kiXi= yi/ kikiXi=yi/ kikiXi=yi/ kiC20.78

40、261.470.53241.460.53601.440.5435C3=0.21740.540.40260.520.41810.480.452910.93500.95410.9964当塔底温度为39时,组成之和=0.99431,故塔顶温度为393.1.4 塔底温度计算塔底为饱和液相,故应采取泡点方程计算塔底温度。泡点就是多组分混合液开始沸腾,产生第一个气泡温度。当混合液处于泡点时,各组分均服从带入得或式中 yi 任意组分i在气相中摩尔分数;xi 任意组分i在液相中摩尔分数;ki 相平衡常数。按上式求泡点时需用试差法。式中xA,xB,xCxn均为已知,所以,在试差时,可先假定一个泡点温度,查出各组

41、分在假设温度下K值,若1说明所设温度偏高,ki值太大,若1说明温度偏低,ki值太小,经反复假设温度,并求出对应kixi直到满足为止,此时温度即泡点。在塔底压力下,假设塔底泡点温度,由p-T-k图查得液相各组分平衡常数,计算过程及结果列表以下。表3-3 在塔底压力下不一样温度平衡常数计算过程及结果组分xi=xWiP=4.1MPa,设T=82P=4.1MPa,设T=84P=4.1MPa,设T=86kiyi= ki xikiyi= ki xikiyi= ki xiC20.03791.440.072391.960.07432.000.0758C3=0.74290.480.68350.950.70581

42、.000.7429C3o0.21050.840.17680.880.18520.920.1937iC4o0.00870.460.00400.480.00420.500.004410.93670.96950.98014当塔底温度86时,满足归一条件,平衡汽相组成之和=0.98014,故塔底温度为86。3.1.5 进料温度计算乙烷塔采取饱和液相进料,和上塔底温度计算同理,故采取泡点方程计算。 计算结果列表以下表3-4 进料压力下不一样温度平衡常数计算过程及结果组分P=4.05Mpa,设T=84P=4.05Mpa,设T=86C20.03792.000.07582.050.0777C3=0.74290

43、.960.71320.980.7280C3o0.21050.880.18520.980.2063iC4o0.00870.480.00420.480.004210.97841.0162当进料温度为86时,组分之和=0.99401,故进料温度为86。3.1.6 脱乙烷塔操作条件汇总表3-5 脱乙烷塔操作条件汇总表项目塔顶进料塔釜回流压力(mpa)4.04.054.13.9温度()398686353.2丙烯塔工艺条件确实定3.2.1 操作压力确实定塔顶采取水作为冷却剂,设水温为15,冷凝器冷凝液出口温度比水温高20,则回流罐中冷凝液温度为35。丙烯塔顶冷凝器为全凝器,则回流罐中冷凝液温度为泡点,所以采取泡点方程计算回流罐压力。式中 yi 任意组分i在气相中摩尔分数;xi 任意

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 品牌综合 > 技术交底/工艺/施工标准

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服