收藏 分销(赏)

任意凸四边形区域上二阶变系数椭圆边值问题有效的谱Galerkin逼近.pdf

上传人:自信****多点 文档编号:3634384 上传时间:2024-07-11 格式:PDF 页数:16 大小:616.13KB
下载 相关 举报
任意凸四边形区域上二阶变系数椭圆边值问题有效的谱Galerkin逼近.pdf_第1页
第1页 / 共16页
任意凸四边形区域上二阶变系数椭圆边值问题有效的谱Galerkin逼近.pdf_第2页
第2页 / 共16页
任意凸四边形区域上二阶变系数椭圆边值问题有效的谱Galerkin逼近.pdf_第3页
第3页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Advances in Applied Mathematics A?,2024,13(1),414-429Published Online January 2024 in Hans.https:/www.hanspub.org/journal/aamhttps:/doi.org/10.12677/aam.2024.131042?o/?CX?Kk?Galerkin%C444?AAA B“?B B?vF2023c12?25FF2024c1?19FuF2024c1?26F?J?3?o/?CX?K?k?Galerkin%CkLV5?CIC?o/=?D=1,123D?f/9A?lgy?f)?35,?|L

2、egendre?E?%Cm|k?l?/?L?y?Galerkin%C?o/?CX?K?c?o/?CX?Kf)?35Galerkin%CEfficient Spectral Galerkin Approximationfor Second Order Elliptic Boundary ValueProblems with Variable Coefficient onArbitrary Convex Quadrilateral DomainXuelin Liu,Yinghong Zhang,Fang ShiSchool of Matnematical Sciences,Guizhou Norm

3、al University,Guiyang Guizhou:4?,A,.?o/?CX?K?Galerkin%CJ.A?,2024,13(1):414-429.DOI:10.12677/aam.2024.1310424?Received:Dec.25th,2023;accepted:Jan.19th,2024;published:Jan.26th,2024AbstractIn this paper,an efficient spectral Galerkin approximation for second-order ellipticboundary value problems with v

4、ariable coefficients on an arbitrary convex quadrilat-eral region is proposed.Firstly,any quadrilateral region is converted toD=1,12by bilinear isoparametric transformation and coordinate transformation,and its weakform and corresponding discrete format onD are established.Secondly,we prove theexist

5、ence and uniqueness of the weak solution.In addition,the Legendre orthogonalpolynomial is used to construct a set of effective basis functions in the approximationspace,and the matrix form of the discrete scheme is derived.Finally,the spectralconvergence of spectral Galerkin approximation to the sec

6、ond-order elliptic boundaryvalue problem with variable coefficients on arbitrary convex quadrilateral region isverified by numerical experiments.KeywordsArbitrary Convex Quadrilateral Region,Second Order Elliptic Boundary ValueProblem with Variable Coefficient,Existence and Uniqueness of Weak Soluti

7、ons,Spectral Galerkin Approximation,Spectral ConvergenceCopyright c?2024 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.3O+I)?5?KA?KXf!6NDA?K 15?5K5z?8(E/)?Ku?K?OkJXk?6,7!k?

8、811 1215?O()v?1wk?:2?$u?O3/)?dT?DOI:10.12677/aam.2024.131042415A?4?O?K?5?5S3z 16 J?3Maxwell DA?K?k?%Cz 17J?o/?A?Kup?%C?,?vkf)?35?)u3?o/?CX?K?Galerkin%C?d?J?J?3?o/?CX?K?k?Galerkin%CkLV5?CIC?o/=?3?f/9A?lgy?f)?35,?|Legendre?E?%Cm|k?lA?/?LMatlab?(JL?Galerki%CU?k?)?o/?CX?K?|Xe312!?K3L?C?f/9l313!y?)?35314

9、!?l?k?y15!?316!?(5?52.C?f/9l?.e?K(u(x,y)+(x,y)u(x,y)=f(x,y),(x,y)u(x,y)=0,(x,y)(1)d:I(x1,y1),(x2,y2),(x3,y3),(x4,y4)?o/(x,y)?Kk.-Hs()Hs0()L?s?Sobolevmkks,|s,OLd?(1)?f/:u H10()?a(u,v)=f(v),v H10(),(2)a(u,v)=Ruv+uvdxdy,f(v)=Rfvdxdy-(x=x1+(x2 x1)x+(x3 x1)y+(x4 x3 x2+x1)x y,y=y1+(y2 y1)x+(y3 y1)y+(y4 y3

10、 y2+y1)x y,(3)w,(3)lD=(x,y):x,y 0,1?V5?CP u(x,y)=u(x,y),(x,y)=(x,y)?y?C?C?Jacobi1?Ive?J(x,y)=?x2 x1+a yx3 x1+a xy2 y1+b yy3 y1+b x?0(4)DOI:10.12677/aam.2024.131042416A?4?a=x4 x3 x2+x1,b=y4 y3 y2+y1.q-x=12(+1),y=12(+1).(5)w,(5)lD=(,):,1,1?D?ICP u(,)=u(x,y),J(,)=J(x,y),(,)=(x,y)d(3)(5)9E?K?FfLCL?d/u=u

11、=2 uy3y1+b2(+1)J uy2y1+b2(+1)J,ux2x1+a2(+1)J ux3x1+a2(+1)J(6)Sobolevm:H10(D)=u:RD(|uy3y1+b2(+1)J uy2y1+b2(+1)J|2+|ux2x1+a2(+1)J ux3x1+a2(+1)J|2)Jdd/?=1,o:IOA(x1,y1)=(2,1),B(x2,y2)=(2,3),C(x3,y3)=(1,1.25),D(x4,y4)=(2,1)X 1OXeK?)(u+u=f,(x,y)u=0,(x,y)TK?()(y+12x+2)(x 2)(y+112x 76)(y 94x 72)sinxsinyu?N3

12、 2x?()u%C)uNm?-e(u,uN)l 2*?N 18%C)()m?1012?*/L?5O3 3 4?()N=20%C”35 6 O?N=15N=20()?)m?”l 1-6*?Figure 1.Generally convex quadrilateral area 1.o/DOI:10.12677/aam.2024.131042420A?4?Figure 2.Error curve between approximate andanalytic solutions 2.%C)m?-Figure 3.Exact solution of u(x,y)image 3.()u(x,y)?”F

13、igure 4.Image of the approximation solution at N=20 4.N=20%C)?”DOI:10.12677/aam.2024.131042421A?4?Figure 5.An image of the error between the exact solutionand the approximate solution at N=15 5.()N=15%C)m?”Figure 6.An image of the error between the exact solutionand the approximate solution at N=20

14、6.()N=20%C)m?”2?o/?=5,o:IOA(x1,y1)=(0,1),B(x2,y2)=(3,0),C(x3,y3)=(1,0),D(x4,y4)=(0,1)X 7OXeK?)(u+u=f,(x,y)u=0,(x,y)TK?()(x+y+1)(y x 1)(y+13x 1)(y 13x+1)sinxsinyu?N3 8x?()u%C)uNm?-e(u,uN)l 8*?N 16%C)()m?1012?*/L?5O3 9 10?()N=20%C”3DOI:10.12677/aam.2024.131042422A?4?11 12O?N=15N=20()?)m?”l 7-12*?Figur

15、e 7.Generally convex quadrilateral area 7.o/Figure 8.Error curve between approximate and analytic solutions 8.%C)m?-DOI:10.12677/aam.2024.131042423A?4?Figure 9.Exact solution of u(x,y)image 9.()u(x,y)?”Figure 10.Image of the approximation solution at N=20 10.N=20%C)?”Figure 11.An image of the error

16、between the exactsolution and the approximate solution at N=15 11.()N=15%C)m?”DOI:10.12677/aam.2024.131042424A?4?Figure 12.An image of the error between the exactsolution and the approximate solution at N=205 12.()N=20%C)m?”3?o/?(x,y)=xy,o:IOA(x1,y1)=(0,1),B(x2,y2)=(3,0),C(x3,y3)=(1,0),D(x4,y4)=(0,1

17、)X 13OXeK?)(u+(x,y)u=f,(x,y)u=0,(x,y)TK?()(x+y+1)(y x 1)(y+13x 1)(y 13x+1)sinxsinyu?N3 13x?()u%C)uNm?-e(u,uN)l 14*?N 16%C)()m?1012?*/L?5O3 15 16?()N=20%C”3 17 18 O?N=15N=20()?)m?”l 13-18*?Figure 13.Generally convex quadrilateral area 13.o/DOI:10.12677/aam.2024.131042425A?4?Figure 14.Error curve betw

18、een approximate andanalytic solutions 14.%C)m?-Figure 15.Exact solution of u(x,y)image 15.()u(x,y)?”Figure 16.Image of the approximation solution at N=20 16.N=20%C)?”DOI:10.12677/aam.2024.131042426A?4?Figure 17.An image of the error between the exactsolution and the approximate solution at N=15 17.(

19、)N=15%C)m?”Figure 18.An image of the error between the exactsolution and the approximate solution at N=20 18.()N=20%C)m?”6.(5?CX?KJ?3?o/k?Galerkin%C?L?C?C?o/1,12/X52|?%C?1?)?CX?Klny?f)?35T=k?k?)L?9?E?E,5,?J?|?U?zAu?m?5?8IDOI:10.12677/aam.2024.131042427A?4?z1 Boffi,D.(2010)Finite Element Approximatio

20、n of Eigenvalue Problems.Acta Numerica,19,1-120.https:/doi.org/10.1017/S09624929100000122 Xu,J.and Zhou,A.(2002)Local and Parallel Finite Element Algorithms for EigenvalueProblems.Acta Mathematicae Applicatae Sinica,18,185-200.https:/doi.org/10.1007/s1025502000183 Hu,J.,Huang,Y.and Shen,H.(2004)The

21、Lower Approximation of Eigenvalue by LumpedMass Finite Element Method.Computational Mathematics(English Edition),22,545-556.4 Liu,F.and Shen,J.(2015)Stabilized Semi-Implicit Spectral Deferred Correction Methods forAllen-Cahn and Cahn-Hilliard Equations.Mathematical Methods in the Applied Sciences,38

22、,4564-4575.https:/doi.org/10.1002/mma.28695 Colton,D.,P aiv arinta,L.and Sylvester,J.(2007)The Interior Transmission Problem.InverseProblems&Imaging,1,13-28.https:/doi.org/10.3934/ipi.2007.1.136 xx.r5?;k?D:a.M?T:M?T,2021.https:/doi.org/10.27061/ki.ghgdu.2021.0016847 D7,p“.)?.DirichletK?AJ.E?,2017,33

23、(12):44-49.https:/doi.org/10.13774/ki.kjtb.2017.12.0098?I,?.k?lYEQrot1?A?e%CO(A?J.B“?(g,),2008(2):68-74.https:/doi.org/10.16614/ki.issn1004-5570.2008.02.0019 Sun,J.(2011)Iterative Methods for Transmission Eigenvalues.SIAM Journal on NumericalAnalysis,49,1860-1874.https:/doi.org/10.1137/10078547810 P

24、erugia,I.and Sch otzau,D.(2002)An hp-Analysis of the Local Discontinuous GalerkinMethod for Diffusion Problems.Journal of Scientific Computing,17,561-571.https:/doi.org/10.1023/A:101511861313011 Cakoni,F.,Colton,D.,Monk,P.,et al.(2010)The Inverse Electromagnetic Scattering Problemfor Anisotropic Med

25、ia.Inverse Problems,26,Article 074004.https:/doi.org/10.1088/0266-5611/26/7/07400412 Guo,B.Y.and Jia,L.H.(2010)Spectral Method on Quadrilaterals.Mathematics of Compu-tation,79,2237-2264.https:/doi.org/10.1090/S0025-5718-10-02329-X13 Guo,B.Y.and Wang,L.L.(2007)Error Analysis of Spectral Method on a T

26、riangle.Advancesin Computational Mathematics,26,473-496.https:/doi.org/10.1007/s10444-005-7471-814 Shen,J.and Tang,T.(2006)Spectral and High-Order Methods with Applications.SciencePress,Beijing.15 Shen,J.,Tang,T.and Wang,L.L.(2011)Spectral Methods:Algorithms,Analysis and Appli-cations.Springer,Scien

27、ce and Business Media.https:/doi.org/10.1007/978-3-540-71041-7DOI:10.12677/aam.2024.131042428A?4?16 An,J.and Zhang,Z.M.(2018)An Efficient Spectral-Galerkin Approximation and Error Anal-ysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries.Journal of Sci-entific Computing,75,157-181.https:/doi.org/10.1007/s10915-017-0528-217 xU.?o/?A?Kup?%C?J.A?,2021,10(12):4201-4208.https:/doi.org/10.12677/AAM.2021.1012446DOI:10.12677/aam.2024.131042429A?

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服