收藏 分销(赏)

锂矿石基因特性及其对选矿的影响.pdf

上传人:自信****多点 文档编号:3631279 上传时间:2024-07-11 格式:PDF 页数:10 大小:4.88MB
下载 相关 举报
锂矿石基因特性及其对选矿的影响.pdf_第1页
第1页 / 共10页
锂矿石基因特性及其对选矿的影响.pdf_第2页
第2页 / 共10页
锂矿石基因特性及其对选矿的影响.pdf_第3页
第3页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2024年第4期doi:10.3969/j.issn.1671-9492.2024.04.002有色金属(选矿部分)锂矿石基因特性及其对选矿的影响23肖仪武1.2,王臻1,2,冯凯1,,王明燕1,2,金建文1,2,叶小璐1.2,部伟1,2,权鸿雁1,2(1.矿冶科技集团有限公司,北京10 0 16 0;2.矿物加工科学与技术国家重点实验室,北京10 2 6 2 8)摘要:锂是重要的战略性新能源矿产,锂矿床主要有卤水型、伟晶岩型、花岗岩型、隐爆角砾岩型和黏土型等五种类型。对于后四类固体矿床来说,因成矿条件及过程的差异,其矿石基因特性具有明显不同。伟晶岩型锂矿Li2O品位高,锂矿物主要为锂辉石、透

2、锂长石、磷锂铝石和锂云母等;花岗岩型锂矿Li2O品位通常较低,但矿床规模大,锂主要赋存于锂白云母、铁锂云母和锂云母中;隐爆角砾岩型锂矿Li2O品位也较高,矿石中的含锂矿物较单一,通常为锂云母;黏土型锂矿中的锂主要赋存在锂的独立矿物(锂绿泥石、羟硼硅钠锂石等)中,或以类质同象和/或吸附形式赋存于黏土矿物(高岭石、伊利石、蒙脱石等)和一水硬铝石中。矿石中锂的回收利用工艺与锂的赋存状态密切相关。花岗岩型锂矿和黏土型锂矿资源在我国广泛分布,随着提锂技术的发展,这两种类型的锂资源具有广阔的开发利用前景。关键词:锂矿;矿石基因;赋存状态;关键矿产;工艺矿物学中图分类号:TD912Genetic Chara

3、cteristics of Lithium Ores and Its Influence on Mineral BeneficiationXIAO Yiwu*2,WANG Zhen*2,FENG Kail-2,WANG Mingyan-2,JIN Jianwen*2,2.State Key Laboratory of Mineral Processing,Beijing 102628,China)Abstract:Lithium is a critical strategic energy metal,and lithium deposits mainly include five types

4、:brine type,pegmatite type,granite type,cryptoexplosive breccia type and clay type.For the latter foursolid mineral types of deposits,their ore genetic properties are significantly different due to differentmineralization conditions and ore forming processes.Pegmatite type lithium deposits feature h

5、igh grade ofLi,O,and the lithium minerals mainly are spodumene,petalite,montebrasite and lepidolite,Granite typelithium deposits generally have low grade of Liz O and large deposit scale,and the lithium minerals mainlyinclude trilithionite,zinnwaldite,and lepidolite.The Liz O grade of the cryptoexpl

6、osive breccia type lithiumdeposits is relatively high,and the lithium bearing mineral in such deposits is mainly lepidolite.In the claytype lithium deposits,lithium usually forms independent lithium minerals such as cookeite and jadarite,lithium might occur in adsorption and isomorphism states in cl

7、ay minerals such as kaolintie,illite,montmorillonite and diaspore as well.The recovery and utilization of lithium in the lithium ores is closelyrelated to the occurrence state of lithium.Granite type and clay type lithium deposits are widely distributedin China.With the development of lithium extrac

8、tion techniques,these two types of lithium resources havepromising prospects for further development and utilization.Key words:lithium deposit;genetic ore properties;occurrence state;critical minerals;processmineralogy文献标志码:AYE Xiaolul-2,GAO Weil2,QUAN Hongyan-2(1.BGRIMM Technology Group,Beijing 100

9、60,China;文章编号:16 7 1-9 49 2(2 0 2 4)0 4-0 0 2 3-10收稿日期:2 0 2 4-0 3-2 9作者简介:肖仪武(19 6 5一),男,江西上饶人,硕士,正高级工程师,主要从事工艺矿物学研究及矿产资源可利用性评价。24随着现代科技的不断进步和新兴产业的快速崛起,对关键金属(稀有、稀散、稀土及部分稀贵)矿产的需求也会加速增长1-2 。近年来,在高新产业的带动下,锂行业市场高速发展,锂的战略地位逐渐凸显,世界各国围绕锂的竞争也越来越激烈。美国、欧盟、澳大利亚、日本均将其列为关键矿产,我国也将锂矿列为2 4种国家战略性矿产资源之一3-5。锂作为一种核心战略

10、关键金属矿产,其资源高效开发利用技术已成为热点。锂资源按地质成因可划分为卤水型、伟晶岩型、花岗岩型、隐爆角砾岩型和黏土型等五类6-8 。由于成矿条件的不同,不同成因锂矿床在矿石的结构构造、矿物组合、矿物的结晶粒度大小等基因特性方面存在着明显差异,进而对矿石的选别回收产生影响91花岗伟晶岩型矿床伟晶岩型锂矿矿石中LizO品位比较高,一般都在1%以上。通常按照锂矿物种类的不同,将伟晶岩型锂矿石分为锂辉石型和锂云母型。锂辉石型锂矿中,矿石中的锂矿物主要为锂辉石,其次为透锂长石、磷锂铝石、锂云母等;主要脉石矿物为长石、石英、白云母,少量磷灰石、绿泥石、高岭石、黑云母等。锂云母型锂矿相比锂辉石型锂矿更少

11、见,其矿石矿序号SiO2163.83264.30364.04464.58564.41664.03764.19864.20964.541064.571164.221263.711364.261464.181564.341663.901763.981864.221963.892064.332164.492264.052364.15注:*表示计算结果,下同。有色金属(选矿部分)物组成和锂辉石型大致相近,锂矿物主要为锂云母。该类矿石通常具有伟晶结构,有用矿物锂辉石、透锂长石、磷锂铝石、锂云母等的嵌布粒度较粗,粗粒部分可以通过手选回收。一般矿石通过粗磨,有用矿物就能得到充分解离。由于锂辉石比共生的石英、

12、长石等主要脉石矿物密度大一些,对于结晶粒度较粗的锂辉石,可以采用重悬浮液或重介质选矿法使锂辉石成为重矿物产品,而脉石矿物则为轻产品,从而实现锂辉石与伴生脉石矿物的有效分离;细粒部分则可进一步通过浮选回收。锂辉石和透锂长石通常产于伟晶岩的中间带或者核部,两者随温度压力条件的改变可发生相互转换。当温度降低时,透锂长石可以转换为锂辉石和石英集合体,而当压力升高时,锂辉石和石英集合体又可以转换为透锂长石13。透锂长石的可浮性较差,浮选效果不理想,但其密度相对锂辉石、磷锂铝石、石英和长石更低,因此可考虑先采用重介质选矿方法优先分选透锂长石,然后再对锂辉石进行浮选回收14。锂辉石中Liz0含量为5.8%8

13、.1%(表1),磷锂铝石中Liz0含量为7.1%11.5%(表2),当矿石中的锂矿物以锂辉石和磷锂铝石为主时,易于通过选矿方法富集得到高品质的锂精矿(LizO含量6%以上);透锂长石和锂云母中LizO的含量相对较低(表3、4),表1锂辉石电子探针成分分析结果Table 1EPMA compositions of spodumeneAl203Mno27.43一27.610.0427.400.0127.280.0227.580.0427.240.0527.540.0427.060.0427.5727.6927.6427.3727.4327.6327.3727.7227.6327.5127.5327

14、.4826.7827.4927.432024年第4期/%FeORb200.160.02一0.220.30.0.580.610.070.080.250.050.100.040.060.030.040.020.030.110.050.030.04Cs200.02一0.020.010.010.040.010.130.010.050.010.040.180.010.080.110.120.250.170.090.17Li20*8.007.898.067.938.047.938.048.037.977.968.007.978.038.037.940.017.910.018.03一7.858.070.01

15、7.950.097.958.060.017.99Total99.4699.8499.73100.13100.0799.8499.8199.95100.19100.5699.9199.2999.8299.9499.8699.5999.7599.7299.61100.1399.5399.7299.7.92024年第4期序号P2O5150.19249.96349.69450.19549.93650.79749.98850.52950.891049.711149.781250.281349.721449.911549.971649.731749.551849.721950.842049.492149.

16、622249.552349.872449.49序号1234567891011121314151617181920肖仪武等:锂矿石基因特性及其对选矿的影响表2磷锂铝石电子探针成分分析结果Table 2EPMA compositions of montebrasiteAl:O3Cao34.280.0234.380.0234.580.0132.990.0234.060.0334.120.0134.030.0233.590.0133.950.0334.150.0234.160.0134.170.0233.460.0334.130.0234.150.0334.350.0133.570.0233.910.

17、0233.77.0.0333.68.0.0333.790.0133.740.0333.380.0334.130.03表3透锂长石电子探针成分分析结果Table3EPMAcompositions of petaliteSiO2Al:O377.9516.7177.2916.7178.1116.6378.5316.6577.3216.5277.0516.5377.7016.6577.8416.6977.9716.7076.6816.5077.1516.6277.6416.4977.8316.5977.7116.6776.9516.6877.6016.6778.1616.6877.6216.5777.

18、2816.5378.1216.7725FTiO21.290.052.820.061.230.101.880.031.300.061.920.082.090.032.280.061.600.083.430.043.30一0.130.011.760.051.810.033.630.070.720.083.000.103.410.041.270.091.330.043.200.012.890.062.200.082.420.01MnoFeO一0.03一一一0.030.030.010.010.01一0.030.01一一一0.01一一一一Liz0*10.8710.7510.5811.2510.8211.

19、1710.8611.2111.2610.7110.7410.9410.9210.8010.8110.6610.8110.7811.2910.7510.7810.7611.0010.62Li20*4.844.804.864.884.814.794.830.024.844.85一4.770.024.800.014.830.014.84一4.83.0.014.780.034.824.860.014.82一4.80一4.86H20*4.934.454.975.145.054.654.794.754.794.374.405.345.134.874.255.204.734.454.965.254.584.

20、714.984.76Total101.64102.43101.17101.49101.25102.73101.79102.42102.58102.44.102.3.9100.89101.07101.57102.91100.75101.78102.33102.25100.57101.99101.74101.54101.45/%Total99.5398.8099.63100.1098.6798.3799.1899.4299.5297.9698.5998.9799.2799.2198.4399.1299.7099.0298.6199.7526序号SiO2Al203TiO2FeOMnoMgoNa20K

21、20Rb20Cs20Zno148.58 24.270.032.150.140.410.139.262.101.02249.60 25.40350.2022.640.03 2.430.150.550.109.272.261.01449.3523.960.06 1.91549.41 23.61649.1426.220.021.47749.5723.230.021.670.310.150.179.402.021.000.067.364.680.83-3.1097.36848.54 26.33949.1426.220.021.470.140.130.259.612.00 0.331050.2022.6

22、40.032.431149.1426.220.021.470.140.13 0.259.611248.36 27.730.020.270.281349.60 25.401449.6924.841548.8027.051649.60 25.401749.6924.841849.3523.960.061.910.220.160.239.302.180.640.096.76 4.611.14一2.8 597.761949.0225.342048.4327.922148.37 27.330.020.300.312248.64 27.480.02 0.240.26有色金属(选矿部分)表4锂云母电子探针成

23、分分析结果Table 4EPMA compositions of lepidolite一0.330.380.220.160.239.302.180.640.096.764.611.14-2.8597.76一1.750.270.10 0.159.032.37 1.270.140.130.259.61一0.310.360.150.550.109.272.261.012.000.33一0.189.651.840.630.025.254.331.93-2.2198.27一0.330.380.360.340.010.17 9.602.21 0.850.08 7.30 4.710.91-3.0897.99

24、一0.350.390.330.380.360.340.010.179.602.210.850.087.304.710.91-3.0897.99一0.390.44一0.270.292024年第4期/%FLi20*H20*O=FTotal一5.874.391.53-2.4797.41一0.199.892.110.290.056.744.681.21-2.8498.04一6.674.851.20一2.8 198.54一6.764.631.122.000.33一0.239.402.180.720.046.12 4.381.46-2.5897.49一5.50 4.551.82-2.3198.866.67

25、4.851.20-2.8198.54一5.504.551.82-2.3198.86一0.19一0.269.73一0.19 9.892.110.29 0.056.744.681.21-2.8498.040.010.169.43一0.219.911.930.27一0.249.852.170.28 0.025.854.331.63-2.4698.25一0.249.901.950.290.095.654.411.75-2.3898.53一2.8 5一5.50 4.551.82-2.3198.869.892.110.290.056.74.2.170.290.032.301.010.017.124.52

26、0.98-3.0097.71一5.314.351.92一2.2 398.5697.624.681.216.494.451.35-2.7398.63-2.8498.04当矿石中的锂矿物以透锂长石和锂云母为主时,通过选矿方法所获得锂精矿的品位也相对较低。此外,由于磷灰石的可浮性与磷锂铝石接近,当矿石中含有一定量的磷灰石时,磷锂铝石精矿的LizO品位会受到一定影响。锂辉石易于在伟晶岩的后期热液流体交代过程中发生蚀变。随着伟晶岩体系结晶分异作用的进行,体系将从相对酸性的环境演化至富碱金属和碱土金属的偏碱性盐水溶液环境。在碱交代阶段,这种偏碱性流体与原生矿物反应,发生钾化和钠化,同时伴随着原生矿物中Li

27、+的大量迁移流失,被热液带出而进入围岩中,致使矿石中的Li2O含量不断降低。由于蚀变程度不同,蚀变矿物组合、化学成分、物理化学性质也存在着规律性变化。蚀变微弱时,基本上以锂辉石残留体为主,仅有少量的白云母、高岭石等蚀变产物沿锂辉石的解理和裂隙产出,锂辉石仍保留其外形,称为“腐锂辉石”。随着蚀变程度的加深,锂被不断带出,腐锂辉石中LizO含量不断降低,直接影响到所富集锂精矿的LizO品位 15-16 。当锂辉石经受深度蚀变时,此时已不存在锂辉石残留体,锂辉石已全部被蚀变为锂绿泥石及其他黏土矿物,LizO含量更低。当锂矿石受到严重的热液蚀变或风化时,会产生相当量的绢云母、锂绿泥石、绿泥石和高岭石等

28、,经磨矿后会形成大量的矿泥,恶化浮选环境,增大浮选分离难度,直接影响锂辉石和锂云母的浮选效果。因此,应采用预先脱泥,再浮选回收锂辉石、锂云母的工艺方案。2花岗岩型矿床花岗岩型锂矿的成矿作用具多阶段性的特点。慢源岩浆加热促使下地壳基底发生部分熔融形成初始岩浆,在逐级上升过程中初始岩浆不断发生分异,导致酸性程度逐步升高,Li、R b、C s 等稀有金属元素和挥发分随岩浆分异和残余岩浆上侵,逐渐向岩浆房顶部聚集,促成含矿岩浆顶部发生云英岩化,稀有元素进人云母类矿物中,使其富集成矿17。随着岩浆的分异演化程度不断提高,花岗岩中云母类矿物种属也发生了相应变化,即从岩浆分异的早期至晚期,云母主要由富锂白云

29、母过渡到铁锂云母甚至形成高度富锂的锂云母 18 1。该类矿石Liz0品位较低,一般为0.2%0.5%,但通常规模大、采矿难度小,因而呈现出显著的规模效应。矿石中的锂主要赋存于锂白云母、铁锂云母和锂云母中。脉石矿物主要为钠长石、正长石、石英、白云母、黄玉等。矿石一般具有中粒或中-细粒花岗结构,富锂矿物嵌布粒度较粗,在粗磨条件下锂矿物易于单体解离,有利于锂矿物的回收。因矿床受长期的风化蚀变作用,而且云母、长石节理发育,2024年第4期导致矿石易于泥化,因此选择适宜的磨矿细度尤为重要。磨矿细度过高,会使得锂白云母、铁锂云母片径急剧减小和石英比表面积增加,导致两者可浮性差异变小;同时微细粒泥质矿物易吸

30、附罩盖于矿物表面,导致矿物间表面性质差异降低,影响捕收剂的捕收效果,不利于锂矿物的回收 1。序号SiO2Al203TiO2FeOMnoMgONa20K20Rb20Cs20Zno146.1631.470.093.48245.1531.280.093.750.430.02 0.659.86 0.560.040.113.071.742.90-1.2998.35346.3828.880.024.380.58 0.010.3610.040.940.080.063.452.032.70-1.45445.4631.440.043.630.440.010.6210.060.590.030.032.811.55

31、3.041.1898.56544.3332.850.042.680.35644.6931.870.093.150.44744.8630.630.033.290.590.020.669.860.690.010.093.582.132.63-1.5197.56845.26 31.680.032.830.390.010.78 9.830.570.020.202.90 1.612.99-1.2297.86945.0831.620.053.070.430.09 0.529.990.451044.93 31.460.03 3.570.270.010.669.700.61 0.020.212.681.451

32、145.08 33.420.031.610.421245.1730.980.042.840.530.34 0.509.790.670.04 0.133.20 1.842.821.3597.541344.8830.230.054.190.471444.86 32.820.032.380.401544.33 32.150.06 3.090.441645.32 30.990.033.220.51.0.040.669.811745.1331.410.063.410.52表6铁锂云母电子探针成分分析结果Table 6EPMA compositions of zinnwaldite序号SiO2146.96

33、0.1419.5310.911.330.04 0.229.451.650.030.107.50 3.930.633.1699.26243.540.1321.7212.161.660.030.459.24343.770.0921.2213.931.320.060.409.361.170.010.126.09 3.011.232.5699.22445.040.1220.7511.641.660.02 0.369.48541.030.2820.7917.790.930.110.31644.290.2020.4414.031.11744.590.0120.6713.351.02844.830.0620

34、.4712.971.11943.510.0320.9113.941.030.01 0.319.371045.220.1319.9412.181.320.030.189.531.421140.670.3920.49 18.920.910.13 0.289.260.850.041241.030.2820.7917.790.930.111345.220.1319.9412.181.320.031447.330.1819.1310.641.790.020.109.761.350.040.067.33 4.03 0.73-3.0999.401547.410.0218.8210.531.85.0.020.

35、099.371646.960.1219.4811.391.400.030.149.531.670.030.20 6.713.931.02-2.8299.791744.830.0620.4712.971.111846.170.0720.1611.361.770.030.279.471.321943.540.1321.7212.161.660.030.459.242047.600.0819.01 10.541.840.010.119.771.220.060.077.524.110.643.1799.412145.890.1820.04 11.431.500.030.299.442243.770.0

36、921.2213.931.320.060.409.361.170.01 0.12 6.093.011.23-2.5699.22肖仪武等:锂矿石基因特性及其对选矿的影响表5锂白云母电子探针成分分析结果Table 5EPMA compositions of trilithionite0.410.020.6510.090.49一0.669.990.49一0.5410.060.580.070.092.371.243.20-1.0097.360.132.50 1.333.15-1.0597.353.06-1.1397.52一0.559.950.720.010.102.331.213.27-0.9897.

37、730.110.629.860.710.030.133.10 1.762.841.3097.670.010.5510.250.59 0.08 0.04 2.091.053.360.8897.630.02 0.5510.280.530.03 0.122.54 1.363.12-1.0797.540.68 0.07 0.132.681.453.061.1397.52一0.559.98TiO2Al203FeOMnoMgONa20K20Rb20Cs20Zno1.400.010.136.872.940.83-2.8998.221.200.010.047.513.370.573.1698.619.440.

38、940.080.075.272.221.492.2298.530.030.139.741.240.05一0.289.391.620.040.117.013.250.792.9599.180.329.321.700.050.137.213.320.713.0499.161.540.010.07 6.87 2.930.81-2.8998.450.166.713.420.93-2.8398.345.22 2.121.50-2.2098.580.319.440.940.080.075.272.221.49-2.2298.530.189.531.421.880.060.017.094.050.82-2.

39、9999.030.329.321.700.050.13 7.21 3.32 0.71-3.04.一0.067.423.700.66-3.1399.331.400.010.136.872.940.832.8998.221.480.02 0.097.473.620.61-3.1527锂白云母中Li,O含量较低,一般小于2%(表5);因Fe、M n 以类质同象形式进入锂云母矿物中,导致铁锂云母Li2O含量偏低(表6),同时使锂云母矿物表面电位增加,可浮性降低,使得其与长石、石英等脉石矿物的分离难度加大。矿石中铁锂云母和锂白云母之间的嵌布关系密切,铁锂云母常以不规则状/%FLiz0*H20*O-FTo

40、tal一0.122.381.243.27-1.0098.8698.450.020.132.211.133.28-0.9397.240.720.040.102.54.FLi20*H20*O=FTotal6.653.160.96-2.8099.230.166.713.421.353.13-1.0797.88/%0.932.8398.3499.1698.9428沿着锂白云母颗粒边缘或裂隙交代,构成粗粒的云母片状、聚片状集合体(图1),从而有利于矿石中锂的回收。由于岩浆分异程度的差异,不同矿床矿石中铁锂云母与锂白云母的矿物量之比值也有所变化,对锂精矿品质会造成影响。若矿石中的锂矿物主要为锂白云母,那么

41、通过浮选获得的锂精矿LizOa有色金属(选矿部分)品位就难以达到2%;而若以铁锂云母为主,则锂精矿LizO品位有可能超过3%。当矿石中铁锂云母、锂白云母含量差异不大时,若锂白云母Li2O含量很低(0.3%),可以考虑先浮选铁锂云母、锂白云母,再对锂粗精矿适当磨矿后采用强磁选分选铁锂云母,以便提高锂精矿LizO品位。2024年第4期铁锂云母铁锂云母钠长石锂白云母锂白云母100mBSE15.00kV100L50mBSE15.00kV200Ld锂白云母铁锂云母铁锂云母锂白云母50umBSE15.00kV250图1铁锂云母沿着边缘和裂隙交代锂白云母Fig.1 The trilithionite rep

42、laced by zinnwaldite along the edges and cracks3隐爆角砾岩型矿床隐爆角砾岩型锂矿产于热液隐爆角砾岩筒内。从深部高演化高分异含矿岩浆中分离出的富挥发分流体逐渐向上运移,并富集在岩体顶部的裂隙与岩体破碎带中,当压力达到临界时发生爆裂形成局部破碎带。在多次反复的作用下最终形成了大规模的隐爆角砾岩筒,同时在震碎角砾岩带和爆破角砾岩带中形成云英岩型锂等稀有元素矿床 2 0-2 1。我国内蒙古维拉斯托锂矿属于此类型。该类矿石中含锂矿物比较单一,主要为锂云母。矿石中矿物种类较多,金属矿物的含量较低,主要为锡石、黑钨矿、辉钼矿、闪锌矿、黄铁矿、磁黄铁矿、铜矿、黄

43、铜矿、方铅矿和毒砂等;非金属矿物主要为50umBSE15.00kV250石英,其次为斜长石、黄玉、黑云母、钠长石、钾长石、萤石、绿泥石和透辉石,少量萤石、透闪石、高岭石、方解石等(表7)。锂云母一方面呈浸染状分布在细粒花岗岩中,另一方面呈线脉状、网格状的“锂云母脉”出现在花岗岩体外侧的角砾岩筒中。矿石中锂云母绝大部分以鳞片状集合体的形式聚合在一起(图2);部分锂云母与黑云母嵌布关系较为紧密,两者常紧密毗邻嵌布(图3)。锂云母的嵌布粒度较粗,通过浮选可以得到较好的回收。值得注意的是,矿石中还存在一定量的黑云母和绿泥石,这些矿物本身不含锂,且易在浮选过程中进入到锂精矿,从而影响锂精矿LizO含量的

44、提高。因此,需要在浮选锂云母的过程中强化对黑云母和绿泥石的抑制。2024年第4期肖仪武等:锂矿石基因特性及其对选矿的影响29锂云母黑云母钟云母LEm图2 锂云母以鳞片状集合体的形式分布Fig.2 The lepidolite distributed as a scaly aggregateTable7The mineral composition of the Weilasituo lithium ore矿物名称含量锂云母32.4黄铜矿0.03闪锌矿0.16锡石0.06毒砂0.04臭葱石0.17褐铁矿0.05黄铁矿0.03金红石0.31高岭石0.52方解石0.14磷灰石0.084富锂黏土型矿床

45、火山凝灰岩、岩浆岩和黏土岩等富锂基底岩石经受强烈的风化作用下发生分解,使得一部分锂从矿物中释出,以 Li与卤素元素形成可溶性盐(如 LiCl)而被水带走。在这一过程中,锂很容易被风化过程中形成的黏土矿物吸附,同时 Lit又易于与 Fe+和Mg+产生的类质同象置换,因此导致黏土质土壤中的锂含量较高,形成富锂黏土型矿床 2-2 3。黏土型锂矿根据成因不同,分为火山岩黏土型锂矿、碳酸盐黏土型锂矿和贾达尔锂矿。黏土型锂矿中锂的赋存状态主要有锂的独立矿物(锂绿泥石、羟硼硅钠锂石等),类质同象和/或吸附于黏土矿物(高岭石、伊利石和蒙脱石等)和一水硬铝石中。不同黏土型锂矿中锂的赋存状态存在差异。塞尔维亚的贾

46、达尔(Jadar)锂矿熔矿岩系为一套湖相火山一沉积岩系,矿石矿物为含锂独立矿物一羟硼硅钠锂石NaLiSiB,O,(O H),该矿物 LizO含量高达7.3%。该矿床平均Li.O品位为1.8%,是迄今发现的品位200um图3锂云母与黑云母紧密嵌布Fig.3The lepidolite closely interwoven with biotite表7 维拉斯托锂矿石的矿物组成/%矿物名称含量石英27.36斜长石7.15黄玉6.89黑云母6.87钠长石6.11钾长石4.92萤石2.9绿泥石1.57透辉石1.2透闪石0.75其他0.29最高的黏土型锂矿床。由于黏土矿物为层状硅酸盐矿物,密度小、粒度细

47、,因此可以通过重选富集羟硼硅钠锂石 2 41。另两类黏土型锂矿中锂主要赋存在锂绿泥石、高岭石、伊利石、一水硬铝石和蒙脱石中(表8、图 4 6)。110%110%1 107110%11051101x10%10图4高岭石LA-ICPMS时间分辨信号谱图Fig.4The LA-ICPMS time-resolved signal spectraof kaoliniteLiAlSiA1SiLi2030剥蚀时间/s405060708030序号SiO2138.41239.53338.49437.88537.82639.31738.49837.88938.351039.531138.671238.75133

48、9.251439.251538.91637.841737.841836.151937.182036.022137.052239.252337.512435.52535.43110%1107106110411030图5伊利石LA-ICPMS时间分辨信号谱图Fig.5The LA-ICPMS time-resolved signalspectra of illite尽管锂绿泥石中LizO含量要比其他矿物高,但由于锂绿泥石与高岭石、伊利石、一水硬铝石等矿物紧密嵌布在一起,且它们易浮易泥化,在浮选过程中会产生夹带、吸附以及罩盖作用,恶化浮选环境,很难通过选矿方法有效分离。表9为不同矿床样品的矿物组成,

49、随着矿石中锂绿泥石、高岭石、伊利石、一水硬铝石等易浮易泥化矿物含量的减少,和石英、长有色金属(选矿部分)表8锂绿泥石电子探针成分分析结果Table 8EPMA compositions of cookeiteAl203TiO241.330.3940.460.4541.210.341.940.1441.730.1940.980.1341.210.341.940.1442.010.2340.460.4540.160.140.950.6640.170.540.170.540.20.1840.90.2340.90.2342.730.7442.011.1142.020.1942.840.2739.441

50、.140.530.0542.920.541.321.32AIKSiLi10202024年第4期/%FeOMgO0.271.360.211.060.321.770.291.310.291.290.291.20.321.770.291.310.251.30.211.060.371.820.210.930.281.250.281.250.371.830.392.190.392.191.271.670.641.691.122.860.951.490.451.010.64.2.090.862.081.292.12LiSiA1K3040剥蚀时间/sNa200.410.460.330.360.310.270

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服