收藏 分销(赏)

概率论习题解答(第5章).doc

上传人:快乐****生活 文档编号:3562024 上传时间:2024-07-09 格式:DOC 页数:7 大小:273.50KB
下载 相关 举报
概率论习题解答(第5章).doc_第1页
第1页 / 共7页
概率论习题解答(第5章).doc_第2页
第2页 / 共7页
概率论习题解答(第5章).doc_第3页
第3页 / 共7页
概率论习题解答(第5章).doc_第4页
第4页 / 共7页
概率论习题解答(第5章).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、第5章习题答案三、解答题1. 设随机变量X1,X2,Xn独立同分布,且XP(l),试利用契比谢夫不等式估计的下界。解:因为XP(l),由契比谢夫不等式可得2. 设E(X) = 1,E(Y) = 1,D(X) = 1,D(Y) = 9,r XY = 0.5,试根据契比谢夫不等式估计P|X + Y | 3的上界。解:由题知 =0Cov= -1.5所以3. 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布现随机地取16只,设它们的寿命是相互独立的求这16只元件的寿命的总和大于1920小时的概率解:设i个元件寿命为Xi小时,i = 1 ,2 , . , 16 ,则X1 ,X2 ,. ,X1

2、6独立同分布,且 E(Xi ) =100,D(Xi ) =10000,i = 1 ,2 , . , 16 ,由独立同分布的中心极限定理可知:近似服从N ( 1600 , 1.610000),所以=1- 0.7881= 0.21194. 某商店负责供应某地区1000人商品,某种商品在一段时间内每人需要用一件的概率为0.6,假定在这一时间段各人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某一时间段内每人最多可以买一件)解:设商店应预备n件这种商品,这一时间段内同时间购买此商品的人数为X ,则X B(1000,0.6),则E(X) = 600,D (

3、X ) = 240,根据题意应确定最小的n,使PX n = 99.7%成立.则PX n 所以,取n=643。即商店应预备643件这种商品,才能以99.7%的概率保证不会脱销。5. 某种难度很大的手术成功率为0.9,先对100个病人进行这种手术,用X记手术成功的人数,求P84 X 95解:依题意, X B(100,0.9),则E(X) = 90,D (X ) = 9, 6. 在一零售商店中,其结帐柜台替顾客服务的时间(以分钟计)是相互独立的随机变量,均值为1.5,方差为1求对100位顾客的总服务时间不多于2小时的概率解:设柜台替第i位顾客服务的时间为X i ,i = 1,2,3.100.则X i

4、 ,i = 1,2,3.100独立同分布,且E(X i)=1.5,D(X i )=1,所以 即对100位顾客的服务时间不多于两个小时的概率为0.0013.7. 已知笔记本电脑中某种配件的合格率仅为80%,某大型电脑厂商月生产笔记本电脑10000台,为了以99.7%的把握保证出厂的电脑均能装上合格的配件,问:此生产厂商每月至少应购买该种配件多少件?解:设此生产厂商每月至少应购买n件该种配件,其中合格品数为X,则X B(n,0.8), 0.997=PX10000= ,解得 n=12655即此生产厂商每月至少应购买12655件改种配件才能满足以99.7的把握保证出厂的电脑均能装上合格的配件。8. 已

5、知一本300页的书中,每页的印刷错误的个数服从参数为0.2的泊松分布,试求整书中的印刷错误总数不多于70个的概率解:记每页印刷错误个数为,i=1,2,3,300,则它们独立同服从参数为0.2的泊松分布,所以E(X i)=0.2,D(X i )=0.2所以 9. 设车间有100台机床,假定每台机床是否开工是独立的,每台机器平均开工率为0.64,开工时需消耗电能a千瓦,问发电机只需供给该车间多少千瓦的电能就能以概率0.99保证车间正常生产?解:设发电机只需供给该车间m千瓦的电能就能以概率0.99保证车间正常生产,记X为100台机床中需开工的机床数,则X B(100,0.64),E(aX)=64a

6、,D(aX ) =1000.640.36a2,所以10. 某保险公司的老年人寿保险有1万人参加,每人每年交200元若老人在该年内死亡,公司付给家属1万元设老年人死亡率为0.017,试求保险公司在一年内的这项保险中亏本的概率解:设当年内投保老人的死亡数为X,则X B (10000,0.017)。保险公司在一年内的保险亏本的概率为 所以保险公司在一年内的这项保险中亏本的概率是0.01四、应用题1. 某餐厅每天接待400名顾客,设每位顾客的消费额(单位:元)服从区间(20,100)上的均匀分布,且顾客的消费额是相互独立的,求该餐厅的日营业额在其平均营业额760元内的概率解:设每位顾客的消费额为Xi

7、,i =1,2,400, 且 X i U (20,100),则,由独立同分布的中心极限定理 , 所以2. 设某型号电子元件的寿命(单位:小时)服从指数分布,其平均寿命为20小时,具体使用时当一元件损坏后立即更换另一新元件,已知每个元件进价为110元,试问在年计划中应为此元件作多少元的预算,才可以有95%的把握保证一年的供应(假定一年工作时间为2000小时)解:设应为这种元件作m元的预算,即需进m/110个元件,记第件的寿命为Xi小时,i =1,2,3, m/110,且X i E (20),所以E(X i)= 20 ,D(X i ) = 400,=0.95,所以所以m=12980即在年计划中应为

8、此元件作12980元的预算,才可以有95%的把握保证一年的供应.3. 据调查某村庄中一对夫妻无孩子、有1个孩子、有2个孩子的概率分别为0.05,0.8,0.15若该村共有400对夫妻,试求:(1) 400对夫妻的孩子总数超过450的概率;(2) 只有1个孩子的夫妻数不多于340的概率解:(1) 设第k对夫妻 孩子数为X k ,则X k的分布律为X k012p0.050.80.15则, 故即400对夫妻的孩子总数超过450的概率为0.1357(2) 设Y为只有一个孩子的夫妻对数,则Y B (400,0.8), 即只有1个孩子的夫妻数不多于340的概率为0.9938(B)1. 设随机变量的概率密度

9、为,m为正整数,证明:(提示:利用Chebyshev不等式)证明:E(X)=f(x)d=,由切比雪夫不等式 = 2. 设为独立同分布的随机变量序列,其共同的分布如下表所示,证明服从Chebyshev大数定律Xn0pk1/41/21/4 证明: ,又因为独立且同分布,所以服从切比雪夫大数定律.3. 设随机变量序列独立同分布,又存在(n=1,2,),证明:(提示:利用Chebyshev大数定律)证明:因为随机变量序列独立同分布,所以也独立同分布,存在由Chebyshev大数定律, (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服