收藏 分销(赏)

数列难题突破之裂项与放缩.doc

上传人:w****g 文档编号:3561428 上传时间:2024-07-09 格式:DOC 页数:4 大小:191.50KB
下载 相关 举报
数列难题突破之裂项与放缩.doc_第1页
第1页 / 共4页
数列难题突破之裂项与放缩.doc_第2页
第2页 / 共4页
数列难题突破之裂项与放缩.doc_第3页
第3页 / 共4页
数列难题突破之裂项与放缩.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

数列难题突破之裂项与放缩裂项与放缩是高考数列题常用技巧 主要有以下3类应用 1裂项法求和 2裂项、放缩证明求和不等式 3放缩证明连乘不等式 裂项法求和一个最简单的裂项求和的例子 【例1】已知等差数列 满足:设求的前 项和. 【例2】设数列为等差数列,且每一项都不为0,则对任意的,有 裂项法求和小结回顾: 裂项、放缩法证明求和不等式【例3】证明: 【例4】已知数列与满足 且,设求证: 和式不等式小结回顾: 放缩去“凑”裂项形式 连乘不等式的证明【例5】求证:【例6】等比数列的前项和为,已知对任意的,点均在函数(且均为常数)的图像上.(II)当时,记求证:总结: 1裂项求和: 2求和不等式:放缩可裂项 3连乘不等式: 配上“错一位”的连乘式可消去 选择“错位”方向 课后作业【习题1】求和【习题2】求证:.【习题3】求证:.分析:考虑配上一个“错一位”的连乘式,发现还是消不掉,因此本题应当配上两个“错一位”的连乘式.答 案【习题1】解:【习题2】分析:希望将和式放缩成可以裂项的形式,可以考虑用放缩.证:【习题3】解:设,则,由知,只需证就有成立。只需要证明对任意,连乘式中的第项大于和的第项,只需要证:此不等式的每项减去1,即,显然成立,故原不等式成立。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服