收藏 分销(赏)

《概率论与数理统计》习题三答案.doc

上传人:精**** 文档编号:3560518 上传时间:2024-07-09 格式:DOC 页数:16 大小:733KB
下载 相关 举报
《概率论与数理统计》习题三答案.doc_第1页
第1页 / 共16页
《概率论与数理统计》习题三答案.doc_第2页
第2页 / 共16页
《概率论与数理统计》习题三答案.doc_第3页
第3页 / 共16页
《概率论与数理统计》习题三答案.doc_第4页
第4页 / 共16页
《概率论与数理统计》习题三答案.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、概率论与数理统计习题及答案习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:XY01231003002.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:XY0123000102P(0黑,2红,2白)=03.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求二维随机变量(X,Y)在长方形域内的概率.【解】如图 题3图说明:也可先求出密度函数,再求概率。4.设随机变

2、量(X,Y)的分布密度f(x,y)=求:(1) 常数A;(2) 随机变量(X,Y)的分布函数;(3) P0X1,0Y2.【解】(1) 由得 A=12(2) 由定义,有 (3) 5.设随机变量(X,Y)的概率密度为f(x,y)=(1) 确定常数k;(2) 求PX1,Y3;(3) 求PX1.5;(4) 求PX+Y4.【解】(1) 由性质有故 (2) (3) (4) 题5图6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为fY(y)=求:(1) X与Y的联合分布密度;(2) PYX.题6图【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为而所以

3、(2) 7.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求(X,Y)的联合分布密度.【解】8.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】 题8图 题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】 题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=(1) 试确定常数c;(2) 求边缘概率密度.【解】(1) 得.(2) 11.设随机变量(X,Y)的概率密度为f(x,y)=求条件概率密度fYX(yx),fXY(xy). 题11图【解】 所以 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小

4、的号码为X,最大的号码为Y.(1) 求X与Y的联合概率分布;(2) X与Y是否相互独立?【解】(1) X与Y的联合分布律如下表YX345120300(2) 因故X与Y不独立13.设二维随机变量(X,Y)的联合分布律为XY2 5 80.40.80.15 0.30 0.350.05 0.12 0.03(1)求关于X和关于Y的边缘分布;(2) X与Y是否相互独立?【解】(1)X和Y的边缘分布如下表XY258PY=yi0.40.150.300.350.80.80.050.120.030.20.20.420.38(2) 因故X与Y不独立.14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分

5、布,Y的概率密度为fY(y)=(1)求X和Y的联合概率密度;(2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1) 因 故 题14图(2) 方程有实根的条件是故 X2Y,从而方程有实根的概率为: 15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=求Z=X/Y的概率密度.【解】如图,Z的分布函数(1) 当z0时,(2) 当0z0)的泊松分布,每位乘客在中途下车的概率为p(0p1),且中途下车与否相互独立,以Y表示在中途下车的人数,求:(1)在发车时有n个乘客的条件下,中途有m人下车的概率;(2)二维随机

6、变量(X,Y)的概率分布.【解】(1) .(2) 24.设随机变量X和Y独立,其中X的概率分布为X,而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u). 【解】设F(y)是Y的分布函数,则由全概率公式,知U=X+Y的分布函数为 由于X和Y独立,可见 由此,得U的概率密度为 25. 25. 设随机变量X与Y相互独立,且均服从区间0,3上的均匀分布,求PmaxX,Y1.解:因为随即变量服从0,3上的均匀分布,于是有 因为X,Y相互独立,所以推得 .26. 设二维随机变量(X,Y)的概率分布为XY -1 0 1 -101a 0 0.20.1 b 0.20 0.1 c其中a,b,c为常数,且X的数学期望E(X)= -0.2,PY0|X0=0.5,记Z=X+Y.求:(1) a,b,c的值;(2) Z的概率分布;(3) PX=Z. 解 (1) 由概率分布的性质知,a+b+c+0.6=1 即 a+b+c = 0.4.由,可得.再由 ,得 .解以上关于a,b,c的三个方程得.(2) Z的可能取值为-2,-1,0,1,2,即Z的概率分布为Z-2 -1 0 1 2P0.2 0.1 0.3 0.3 0.1(3) . (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服