1、第三章 多维随机变量及其概率分布1、解 互换球后,红球的总数是不变的,即有,的可能取值有:2,3,4,的取值为:2,3,4。则的联合分布律为:由于,计算的边际分布律为:2解: 因事件与事件相互独立,则,即 由,解得。3、解 利用分布律的性质,由题意,得计算可得:于是的边际分布律为:的边际分布律为,4解:(1)由已知,则,。(2)5、解 (1)每次抛硬币是正面的概率为0.5,且每次抛硬币是相互独立的。由题意知,的可能取值有:3,2,1,0,的取值为:3,1。则的联合分布律为:,的边际分布律为:,的边际分布律为:(2)在的条件下的条件分布律为:,6解:(),。() ,。() ,。7、解 (1)已知
2、,。由题意知,每次因超速引起的事故是相互独立的,当时,。于是的联合分布律为:,(;)(2)的边际分布律为:,即。(该题与41页例3.1.4相似)解:()可取值为,。() ,。9、解 (1)由边际分布函数的定义,知(2)从和的分布函数,可以判断出和都服从两点分布,则的边际分布律为: 0 1 0.3 0.7 的边际分布律为 0 1 0.4 0.6 (3) 易判断出,所以的联合分布律为:。解:(1),。(2) 当或时,当,时,当,时,当,时,当,时,。(3) 所以,的联合分布函数为11、解 由的联合分布律可知,在的条件下,的条件分布律为:因此在的条件下,的条件分布函数为12解:设,则,时,即。所以的
3、联合分布函数为13,解 由的性质,得:,所以 (2)设,则(3)设,则14解:(1)由得。(2) 由(1)知,则15、解 (1)由题意,知当,当 ,所以:;当 ,当, 所以 :;(2)当时,有(3)当已知时,由的公式可以判断出,的条件分布为上的均匀分布。16解:(1)由得,(2)当时,(3) 。17、解 (1)由题意可得:当时,当,所以 ;(2)当时(3)当时,所以 。18解:(1)因,所以(2)19、解 设事故车与处理车的距离的分布函数为,和都服从(0,m)的均匀分布,且相互独立,由题意知:当时, ,有所以的概率密度函数为:20解:由题意得,即(1)(2)(3) 同理得,所以,故和不独立。2
4、1、解 (1)设,的边际概率密度分别为,由已知条件得,(计算的详细过程见例3.3.5)(2)有条件概率密度的定义可得: 在的条件下,的条件概率密度为:(3)22解:(1) ,(2) 当时,与,与均独立,则所以,即与独立。23、解 设表示正常工作的时间。由题意知(),即。设是设备正常工作时间的概率分布函数,是概率密度函数。则当时当时,。于是:同时可求得:。24解:(1),。所以,(2)所以,。25、解 设,分别是,的概率密度。利用公式(3.5.5),由题意得:,。26解: 27、解 设为一月中第天的产煤量(),是一月中总的产煤量。由于,且相互独立,因此有,即于是,28 所以,。29、解 (1)由于(),且相互独立,因此有(见例3.5.1),由题意知,得(2)所求的概率为:(3)由题意可求:及于是所求的概率为:30解:,。,。,。31、解 设的概率密度函数为。(1)串联当时计算可得当时,显然有。因此的概率密度函数为为:(2)并联当时计算可得当时,显然有。因此的概率密度函数为为:(3)备份由题意知,于是当时,显然有。当时从而所求的概率密度函数为:当时当时32解:令,则 所以,33、解 (1)由题意得,对独立观察次,次观察值之和的概率分布律为:,(2)的可能取值为:0,1,的可能取值为:0,1,因此的联合分布律为:34解:令,则