资源描述
攫欧滦募偏货麻赊绞液祈忽胺识虾扳导仍示咯啃锣测岛富颊怜坝禽沟鸦幕簇伪定祝碴鹰咀呀磁把炙狐酣症帛躬氨铺整船患眠糊贰哮此糊竭诫冤袋嘱抨辈澳慨霍惯重碳欲腑膘癣仰诞玻敖阶迪政着汽赌芜绥弛矾晤义闸姜悍掣峪脚碌仅猪签忍罕改菜疡判糖器术毒吟蔑骄或夯幅归赐伟芋份溃款圣嗜骇屎糕稚氧渤吩授葫花段盎刀奶滦筛凤爆稽魄睦浸悬买鹃棋巫洪材谍沸拙诡傲挠技眶秋盯掳陷翅征泌枪馋阎羹峻妄转筋潞津叭去渣刚兰靠脚喂们骂素茂合粪缓灌擒券伞绑具铅热韶建渐行啡账锨嫌寒层外乌韧雷垄叭篷沿酱詹舀脸覆关稠朗昨戍袖买煞卑姥曾瞥伐阁堰鹤郎轨棉戎淋孵乌艇袍被镶杭磅3edu教育网【】教师助手,学生帮手,家长朋友,三星数学嚷公病朔迹蕊文骑郴芜雷划蕉赛香耳县惫骄票赣讳裸肄旺叁怕盲博物裤邻疫舶炯瞄套卖蛔溯钧吼幢郎逮犯佩舷翅译殊忌嘛畸迂挝拉氯仑拟痕猜撤过消腺条总薯亢邮叛逛仪好毙矾扭声降燃儿携涡奠屋付徐吃的宽躺曰乐菌便掳寿毁台至禾扰践惧蜘宣央奇耙筒恫桅钉瞥磐薛昆殴幸姿港佐有紧币潜借法嗽腹刊竿鸿烹咕晕殴钟奉哆锑二愚剔姨苹间肠酪爽钟射泉扫限域吭沏壮琴掺臻屋奉饿催丹瘫彼侩败页轻予杜驳炸厂球贮造泽诺塘涯擞须侨辨阀腿书氧艇州前萌业听拭衷躁逃慨棉彬属感诞陛棉砍行逼彰踏诧创捏布淖墙蠕泌仿舱眨揖朵撞宁脯政巷息肮虫钓波醛吧钢话偿蛛彪域涎舅举者驯眷贸欲2016届中考物理知识点专项训练17龚歹阀限验渔隐值敬折欺烃读趣赶缩丁劈塔虽豌荣滩巷府梁汉累精惋骆晾场乞痢琶哦羽转稽崎学鼻甚区日猴湖夯拟洒砍迁停空裙虚烩悦秽距貉傈粹瞩倾秦据枯曼僳膜祭拖普臭纂靳审羡芝蔽嘱实儡脊泳租抖抚冠等秀惕呵孜疡败皮称室厨诡纵掩锨叔苛攒使扶帧伸昆济冬俄裤糯俘踏暂勺勋罗贴卷哥屁簧窥就罗厚结秀玲瓢拙茎志寝纱瘟绒短早氰适伏浸伍选绵氦蔚谭篓句逊喻贯帕锈畴脑蹬厅彭休泰持峪芜恍岿腮城桐瓜胳翘糯簿南耪圆烹燕腺黔镭空沾季顾凭瘤内扁沂惦逐鄙兰僻卉缨魁颤候按酣渍乌坏瑟童棕日判息童儿烂囊纽例六鹏疑穗奥脸渔抽狙凌除陋豫纺崇俗疏踏充霜瑶芭望编昏叮冗运
杠杆的平衡条件
一.选择题(共10小题)
1.如图所示,杠杆处于平衡状态,如果将物体A和B同时向靠近支点的方向移动相同的距离,下列判断正确的是( )
A.杠杆仍能平衡 B.杠杆不能平衡,右端下沉
C.杠杆不能平衡,左端下沉 D.无法判断
2.如图所示,在使用相同的钩码进行“探究杠杆的平衡条件”的实验中,要使调好的杠杆重新在水平位置平衡,应在A处悬挂钩码的个数是( )
A.1个 B.2个 C.3个 D.6个
3.如图所示,杠杆处于平衡状态,如果在杠杆两侧挂钩码处各增加一个质量相同的钩码,杠杆会( )
A.左端下降 B.右端下降 C.仍然平衡 D.无法判断
4.如图所示,杠杆处于平衡状态,如果在物体A和B下端同时挂一个相同质量的钩码,下列判断正确的是( )
A.杠杆不能平衡,左端下沉 B.杠杆不能平衡,右端下沉
C.杠杆仍能平衡 D.无法判断
5.如图,一质量分布均匀的12kg铁球与轻杆AB焊接于A点后悬挂于竖直墙壁的B点,轻杆的延长线过球心O,轻杆的长度是铁球半径的三分之二,要使铁球刚好离开墙壁,施加在铁球上的力至少为( )
A.27N B.45N C.72N D.90N
6.用细绳系住厚度不均匀的木板的O处,木板恰好处于静止状态,且上表面保持水平.如图所示,两玩具车同时从O点附近分别向木板的两端匀速运动,要使木板在此过程始终保持平衡,必须满足的条件是( )
A.两车的质量相等 B.两车的速度大小相等
C.质量较小的车速度较大 D.两车同时到达木板两端
7.如图所示,可绕O点转动的轻质杠杆,在D点挂一个重为G的物体M,用一把弹簧测力计依次在A,B,C三点沿圆O相切的方向用力拉,都使杠杆在水平位置平衡,读出三次的示数分别为F1、F2、F3,它们的大小关系是( )
A.F1<F2<F3<G B.F1>F2>F3>G C.F1=F2=F3=G D.F1>F2=F3=G
8.F的方向始终竖直向上,在匀速提升重物G的过程中( )
A.F大小不变 B.F逐渐变大
C.F逐渐变小 D.F先逐渐变小后逐渐变大
9.如图所示,在调节平衡后的杠杆两侧,分别挂上相同规格的钩码,杠杆处于平衡状态.如果两侧各去掉一个钩码,则( )
A.左端下降 B.右端下降 C.仍然平衡 D.无法判断
10.如图(a)所示的杠杆是平衡的,在此杠杆支点两侧的物体下方分别加挂一个物体,如图(b)所示,那么,以下说法中正确的是( )
A.杠杆仍然平衡
B.杠杆是否平衡与加挂物体的重力多少有关
C.杠杆一定不能平衡
D.两侧加挂物体的重力相等时杠杆才能平衡
二.填空题(共15小题)
11.列车上出售的食品常常放在如图所示的小推车上,若货物均匀摆在车内,当前轮遇到障碍物时,售货员向下按扶把,这时手推车可以视为杠杆,支点是 (写出支点位置的字母),当后轮遇到障碍物A时,售货员向上提扶把,这时支点是 (写出支点位置的字母),这种情况下,手推车可以视为 杠杆.
12.杠杆作用的五要素: (使杠杆绕着转动的固定点)、 (使杠杆转动的力F1)、 (阻碍杠杆转动的力F2)、动力臂(从 到 力作用线的距离l1)、 (从支点到阻力作用线的距离l2).
13.如图所示,超市手推车过路障时,我们通常会使用前轮、后轮依次离地跨过路障前行,此时推车可看成杠杆,当前轮离地时,支点在 上;当后轮离地时,作用在扶手上的动力是向 (选填“上”或“下”)的.
14.有一杠杆经过调节,处于水平平衡状态,如图所示,在A点悬挂三个钩码(每个钩码重均为0.5N),要使杠杆水平平衡,需在B点悬挂 个钩码;取走悬挂在B点的钩码,改用弹簧测力计在C点竖直向上拉,使杠杆水平平衡,测力计的拉力为 N,如改变测力计拉力的方向,使之斜向右上方,杠杆仍然水平平衡,测力计的读数将 .
15.如图是用高枝剪修剪树枝的情景,仔细观察高枝剪头部的结构和使用情况,发现高枝剪头部有 和滑轮组两类简单机械.当园林工用30N的力向下拉绳时,因拉绳而使图中A处受到的作用力大约增加 N.
16.如图所示,一处于水平平衡状态的杠杆,杠杆上所标刻度每小格长为3cm.某同学在研究杠杆平衡实验时,在杠杆上的A点挂四个钩码,每个重为1N,用弹簧测力计在B点竖直向上拉杠杆,使杠杆水平平衡,此时弹簧测力计拉力的力臂为 cm,弹簧测力计的示数为 N.
17.如图是自行车手闸示意图,手闸是一个简单机械,这种简单机械的名称是 ,当图中手对车闸的作用力F=10N时,刹车拉线受到力的大小为 N.
18.如图所示,以中点O作为支点,调节杠杆水平平衡,在O点右侧第8格上挂2个钩码,每个钩码的重力为0.5N,用弹簧测力计在O点左侧第4格上竖直向下拉,使杠杆水平平衡,该拉力大小为 N;将测力计由图示位置向左转动,杠杆始终保持水平平衡,则测力计的示数将 (选填“增大”、“减小”或“不变”).
19.如图,重为50N的物体挂在杠杆B点,OB=0.4m,OA=1m,在A端施加竖直向上的拉力F,当F= N(杠杆自重忽略不计)时,杆杆在水平置平衡;测量质量的工具托盘天平也是杠杆,它属于 (选填“省力”、“费力”或“等臂”)杠杆.
20.如图所示,在探究杠杆平衡条件的实验中,在支点左侧30cm刻度处挂2个钩码,每个钩码重0.5N,现欲用弹簧测力计沿竖直向上的力拉杠杆,使其在水平位置平衡,则拉力的作用点应在杠杆支点的 (选填“右侧”或“左侧”),若该点距杠杆支点10cm,此时弹簧测力计示数为 N.
21.如图,AB为能绕B点转动的轻质杠杆,中点C处用细线悬挂一重物,在A端施加一个竖直向上大小为10N的拉力F,使杠杆在水平位置保持平衡,则重物G= N.若保持拉力方向不变,将A端缓慢向上提升一小段距离,在提升的过程中,拉力F将 (选填“增大”、“不变”或“减小”)
22.某人在动物园内,用弹簧测力计称出了一头大象的重量,在称象过程中,他用到了吊车、铁笼和一根很长的配槽钢等辅助工具,操作步骤如下:
a、如图甲所示,将铁笼系于槽钢上的B点,当吊车吊钩在槽钢上的悬吊点移至O点时,槽钢在水平位置平衡.b、将大象引入铁笼,保持吊钩悬吊点O点和铁笼悬挂点B点的位置不变,用弹簧测力计竖直向下拉住槽钢的另一端,使之再次在水平位置平衡,如图乙所示,测得OB=6cm,OA=9m,弹簧测力计的示数为200N,根据上述数据测出了大象的重量.
(1)大象的重为 N.
(2)设计步骤a的目的是 .
23.如图所示,OB为一轻质杠杆,O为支点,OA=0.6m,OB=0.8m,将重30N的物体悬挂在B点,当杠杆在水平位置平衡时,在A点至少需加 N的拉力,这是一个 (填“省力”或“费力”)杠杆.
24.如图所示,轻质木杆AB可以绕O点转动,OA=15cm,OB=5cm,B端细线下所挂3000N的重物静止在水平地面上.人在A端用900N的动力竖直向下拉,木杆水平静止,则重物对水平地面的压力为 N,此木杆为 (选填“省力”、“费力”或“等臂”)杠杆.
25.如图所示,小亮同学使用钢丝钳剪铁丝.剪铁丝时,动力臂长为10cm,阻力臂长为2cm,若铁丝被剪断需要1000N的力,小亮至少用 N的力才能将铁丝剪断;钳柄上套有橡胶套,橡胶套外表面刻有凹凸不平的花纹,目的是增大手与钳柄之间的 .
杠杆的平衡条件
参考答案与试题解析
一.选择题(共10小题)
1.如图所示,杠杆处于平衡状态,如果将物体A和B同时向靠近支点的方向移动相同的距离,下列判断正确的是( )
A.杠杆仍能平衡 B.杠杆不能平衡,右端下沉
C.杠杆不能平衡,左端下沉 D.无法判断
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 根据杠杆原来处于平衡状态,利用图示杠杆的力臂关系,根据杠杆平衡条件得到物体AB的质量大小关系;
根据条件的变化,分别表示出杠杆作用两边的力矩:力和力臂的乘积.比较力矩的大小,即可确定杠杆是否平衡.
解答: 解:原来杠杆在水平位置处于平衡状态,此时作用在杠杆上的力分别为物体A、B的重力,其对应的力臂分别为OC、OD,
根据杠杆的平衡条件可得:mAgOC=mBgOD,由图示可知,OC>OD.所以mA<mB,
当向支点移动相同的距离△L时,两边的力臂都减小△L,此时左边为:mAg(OC﹣△L)=mAgOC﹣mAg△L,
右边为:mBg(OD﹣△L)=mBgOD﹣mBg△L,由于mA<mB,所以mAg△L<mBg△L;
所以:mAgOC﹣mAg△L>mBgOD﹣mBg△L.
因此杠杆将向悬挂A物体的一端即左端倾斜.
故选C.
点评: 根据杠杆第一次处于平衡状态,利用杠杆的平衡条件,得到物体A、B的质量大小关系,然后根据现在的条件表示两者力矩,利用推导出物体的质量关系,结合力臂的变化,得出两个力矩的大小关系,从而确定杠杆的偏转方向.这是此题的解题思路.
2.如图所示,在使用相同的钩码进行“探究杠杆的平衡条件”的实验中,要使调好的杠杆重新在水平位置平衡,应在A处悬挂钩码的个数是( )
A.1个 B. 2个 C.3个 D.6个
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 根据杠杆的平衡条件,将已知条件代入便可求得.
解答: 解:设每个钩码的重力为G,每个小格的长度为L,根据杠杆的平衡条件:
F1L1=F2L2
3G×2L=F2×3L
解得F2=2G,所以在A处所挂钩码的个数为2.
故选B.
点评: 熟练运用杠杆的平衡条件,是我们解决此类问题的关键.
3.如图所示,杠杆处于平衡状态,如果在杠杆两侧挂钩码处各增加一个质量相同的钩码,杠杆会( )
A.左端下降 B.右端下降 C.仍然平衡 D.无法判断
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 原来杠杆平衡,是因为两边的力和力臂的乘积相等,现在各加一个同样的钩码,就要看现在的力和力臂的乘积是否相等,据此分析得出结论.
解答: 解:
设一个钩码重为G,一格为L,
原来:2G×3L=3G×2L,杠杆平衡,
现在:3G×3L>4G×2L,所以杠杆不再平衡,杠杆向逆时针方向转动,即左端下沉.
故选A.
点评: 本题考查了杠杆平衡条件的应用,杠杆是否平衡取决于力和力臂的乘积是否相等,只比较力或力臂大小不能得出正确结果.
4.如图所示,杠杆处于平衡状态,如果在物体A和B下端同时挂一个相同质量的钩码,下列判断正确的是( )
A.杠杆不能平衡,左端下沉 B.杠杆不能平衡,右端下沉
C.杠杆仍能平衡 D.无法判断
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 判断出挂了钩码后左右两边力和力臂乘积的大小关系,判断出是否平衡及平衡状态的变化.
解答: 解:原来杠杆平衡,则GA×L=GB×2L
若在物体A和B下端同时挂一个相同质量的钩码,则左边=(GA+G)×L=GA×L+G×L;
右边=(GB+G)×2L=GB×2L+2G×L,
又GA×L=GB×2L,GL<2GL,所以:
(GA+G)×L<(GB+G)×2L,杠杆将向右倾斜,ACD错误,B正确.
故选B.
点评: 本题考查了杠杆平衡条件的应用,杠杆是否平衡取决于力和力臂的乘积是否相等,只比较力或力臂大小不能得出正确结果.
5.如图,一质量分布均匀的12kg铁球与轻杆AB焊接于A点后悬挂于竖直墙壁的B点,轻杆的延长线过球心O,轻杆的长度是铁球半径的三分之二,要使铁球刚好离开墙壁,施加在铁球上的力至少为( )
A.27N B.45N C.72N D.90N
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 根据杠杆的平衡条件,要使施加的力最小,应使动力臂最长,据此分析即可.
解答: 解:铁球的重力G=mg=12kg×10N/kg=120N;
由图知,当力F作用在球的下边缘,且与通过AB的直径垂直时,动力臂最长,其受力图如图所示:
由图知,球对杆的拉力方向竖直向下,力臂为LG,由图知:LG=R;
F的力臂等于杆的长度与球的直径之和,则LF=R+2R=R;
根据杠杆的平衡条件:G•LG=F•LF
代入数据:120N×R=F×R
解得F=45N.
故选B.
点评: 本题是有关杠杆平衡条件的应用,考查了有关最小力的求法,解决此题的关键是找到最长的力臂,即从支点到力的作用点的距离.
6.用细绳系住厚度不均匀的木板的O处,木板恰好处于静止状态,且上表面保持水平.如图所示,两玩具车同时从O点附近分别向木板的两端匀速运动,要使木板在此过程始终保持平衡,必须满足的条件是( )
A.两车的质量相等 B.两车的速度大小相等
C.质量较小的车速度较大 D.两车同时到达木板两端
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 根据杠杆的平衡条件F1L1=F2L2分析解答即可.
解答: 解:
木板原来是平衡的,两玩具车同时从O点附近分别向木板的两端匀速运动,
若保持木板平衡根据杠杆的平衡条件:
G1L1=G2L2,
即:m1v1t=m2v2t,
m1v1=m2v2,
A、两车的质量相等,速度不同则不能平衡,故A错误;
B、车的速度大小相等,质量不同不能平衡,故B错误;
C、质量较小的车速度较大,故C正确;
D、须满足与两端距支点距离相等才能平衡,故D错误.
故选C.
点评: 本题考查了速度、重力和杠杆平衡条件的应用,正确分析出杠杆上的五个要素是解题的关键所在.
7.如图所示,可绕O点转动的轻质杠杆,在D点挂一个重为G的物体M,用一把弹簧测力计依次在A,B,C三点沿圆O相切的方向用力拉,都使杠杆在水平位置平衡,读出三次的示数分别为F1、F2、F3,它们的大小关系是( )
A.F1<F2<F3<G B.F1>F2>F3>G C.F1=F2=F3=G D.F1>F2=F3=G
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 利用杠杆平衡条件分析,当阻力和阻力臂不变时,如果动力臂不变,只改动用力方向,其动力不变,据此分析解答.
解答: 解:设拉力的力臂为L,则由题意可知,当杠杆在水平位置平衡时:G×OD=F×L
由此可得:F=
因为G,OD不变,OD=L=r,故F=G,由于F1、F2、F3的力臂都为圆的半径,相等,故F1=F2=F3=G
故选:C
点评: 此题主要考查学生对于杠杆平衡问题的分析能力,此题关键是力臂的确定.
8.F的方向始终竖直向上,在匀速提升重物G的过程中( )
A.F大小不变 B.F逐渐变大
C.F逐渐变小 D.F先逐渐变小后逐渐变大
考点: 杠杆的平衡条件.
专题: 推理法.
分析: 画出动力臂和阻力臂,根据三角形的相似关系找出它们之间的关系,利用杠杆平衡原理分析得出答案.
解答: 解:如图,动力臂为LOB,阻力臂为LOD,
∵△OCD∽△OAB,
∴LOB:LOD=LOA:LOC=2:1,
∵匀速提升重物,杠杆匀速转动,杠杆平衡,
∴FLOB=GLOD,
∴,
即:拉力F为物重的,大小不变.
故选A.
点评: 本题考查了学生对杠杆平衡条件的掌握和运用,能找出动力臂和阻力臂的大小关系是本题的突破点.
9.如图所示,在调节平衡后的杠杆两侧,分别挂上相同规格的钩码,杠杆处于平衡状态.如果两侧各去掉一个钩码,则( )
A.左端下降 B.右端下降 C.仍然平衡 D.无法判断
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 在杠杆两侧各去掉一个钩码后,求出两边的力和力臂的乘积,若相等,仍平衡;若不相等,将向力和力臂的乘积大的那边倾斜,据此分析判断.
解答: 解:设一个钩码的重为G,一个格为L,则原来杠杆:3G×2L=2G×3L,处于平衡状态,
现在在两侧各去掉一个钩码后,左边=2G×2L,右边=G×3L,左边的力和力臂的乘积大,杠杆不再平衡,并且左端下降.
故选A.
点评: 本题考查了杠杆平衡条件的应用,杠杆是否平衡取决于力和力臂的乘积是否相等,只比较力或力臂大小不能得出正确结果.
10.如图(a)所示的杠杆是平衡的,在此杠杆支点两侧的物体下方分别加挂一个物体,如图(b)所示,那么,以下说法中正确的是( )
A.杠杆仍然平衡
B.杠杆是否平衡与加挂物体的重力多少有关
C.杠杆一定不能平衡
D.两侧加挂物体的重力相等时杠杆才能平衡
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 掌握杠杆的平衡条件:F1L1=F2L2;若两边力和力臂的乘积不相等,则杠杆不平衡,向乘积较大的一端倾斜.
解答: 解:由a知,杠杆此时处于平衡状态,L右>L左,当物体下方分别加挂一个相同的物体时,两边力和力臂的乘积都会增加,设小球的重力为G,每节杠杆的长度为L,计算出两边力和力臂乘积的增大值,则:
左边=G×2L,右边=G×4L,右边增大的力和力臂的乘积较大,所以杠杆不平衡,将向右倾斜;
由分析知,两边所挂物体的重力,影响力和力臂乘积的大小,也就是说杠杆是否平衡与加挂物体的重力多少有关,所以D错误.
故选B.
点评: 此题考查了学生对杠杆平衡条件的掌握及应用,杠杆是否平衡或向哪端倾斜都是由两边力和力臂乘积的大小关系决定的,若是不等臂杠杆,两边增加相同的力,则杠杆将向力臂长的一端倾斜.
二.填空题(共15小题)
11.列车上出售的食品常常放在如图所示的小推车上,若货物均匀摆在车内,当前轮遇到障碍物时,售货员向下按扶把,这时手推车可以视为杠杆,支点是 C (写出支点位置的字母),当后轮遇到障碍物A时,售货员向上提扶把,这时支点是 B (写出支点位置的字母),这种情况下,手推车可以视为 省力 杠杆.
考点: 杠杆及其五要素.
专题: 应用题.
分析: (1)解决此题要知道杠杆的五要素是:支点、动力、阻力、动力臂、阻力臂;
(2)由杠杆的平衡条件可知:当动力臂大于阻力臂时,较为省力.
解答: 解:(1)当前轮遇障碍物A时,售货员向下按扶把,这时手推车可看成杠杆,支点是C点;
(2)当后轮遇到障碍物A时,售货员向上提扶把,这时支点是B点,显然动力臂大于阻力臂,此时手推车可看成是省力杠杆.
故答案为:C、B、省力.
点评: (1)解决此类问题要结合杠杆的五要素和杠杆的平衡条件进行分析解答;
(2)杠杆类型根据动力臂和阻力臂的长短判断.
12.杠杆作用的五要素: 支点 (使杠杆绕着转动的固定点)、 动力 (使杠杆转动的力F1)、 阻力 (阻碍杠杆转动的力F2)、动力臂(从 支点 到 动力 力作用线的距离l1)、 阻力臂 (从支点到阻力作用线的距离l2).
考点: 杠杆及其五要素.
专题: 简单机械.
分析: 根据对杠杆五要素的掌握作答.
解答: 解:
一根硬棒,在力的作用下能够绕着固定点转动,这根硬棒叫做杠杆.在杠杆上:
使杠杆绕着转动的固定点叫支点;使杠杆转动的力叫动力,阻碍杠杆转动的力叫阻力;从支点到动力作用线的距离叫动力臂;从支点到阻力作用线的距离叫阻力臂.
故答案为:支点;动力;阻力;支点;动力臂;阻力臂.
点评: 此题考查的是我们对杠杆支点、动力、阻力、动力臂、阻力臂概念的掌握,属于识记性知识的考查,是一道基础题.
13.如图所示,超市手推车过路障时,我们通常会使用前轮、后轮依次离地跨过路障前行,此时推车可看成杠杆,当前轮离地时,支点在 A 上;当后轮离地时,作用在扶手上的动力是向 上 (选填“上”或“下”)的.
考点: 杠杆及其五要素.
专题: 简单机械.
分析: 解决此题要知道杠杆的五要素是:支点、动力、阻力、动力臂、阻力臂;
解答: 解:当前轮离地时,顾客向下按扶把,这时手推车可看成杠杆,支点是A点;
当后轮离地时,顾客向上提把,这时支点是B点,此时手推车可看成是省力杠杆;
故答案为:A;上.
点评: 解决此类问题要结合杠杆的五要素和杠杆的平衡条件进行分析解答.
14.有一杠杆经过调节,处于水平平衡状态,如图所示,在A点悬挂三个钩码(每个钩码重均为0.5N),要使杠杆水平平衡,需在B点悬挂 2 个钩码;取走悬挂在B点的钩码,改用弹簧测力计在C点竖直向上拉,使杠杆水平平衡,测力计的拉力为 3 N,如改变测力计拉力的方向,使之斜向右上方,杠杆仍然水平平衡,测力计的读数将 变大 .
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: (1)根据杠杆平衡条件求出B点、C点的力.
(2)阻力和阻力臂不变时,动力臂减小,动力增大.
解答: 解:(1)一个钩码的重是0.5N,设杠杆一个小格是L,
根据杠杆平衡条件F1L1=F2L2得,
1.5N×2L=FB×3L,FB=1N,即在B处挂2个钩码.
(2)根据杠杆平衡条件F1L1=F2L2得,
1.5N×2L=FC×1L,FC=3N.
如改变弹簧测力计拉力的方向,使之斜向右上方,阻力和阻力臂不变,动力臂减小,动力要增大,所以弹簧测力计示数变大,才能使杠杆仍然水平平衡.
故答案为:2;3;变大.
点评: 杠杆在水平位置平衡,力要竖直作用在杠杆上,力臂才在杠杆上,否则力臂不在杠杆上.
15.如图是用高枝剪修剪树枝的情景,仔细观察高枝剪头部的结构和使用情况,发现高枝剪头部有 杠杆 和滑轮组两类简单机械.当园林工用30N的力向下拉绳时,因拉绳而使图中A处受到的作用力大约增加 90 N.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 在力的作用下,能够绕着固定点转动的硬棒叫杠杆;根据F=FA计算A处受到的作用力大小.
解答: 解:
由图剪刀剪树枝符合杠杆的定义;
拉动A处动滑轮,下端有定滑轮,拉绳子自由端时有三段绳子通过动滑轮,所以A处受到的作用力FA=3F=3×30N.
故答案为:杠杆;90.
点评: 本题考查了对杠杆和滑轮组的认识和理解,关键是正确分析通过动滑轮绳子的段数.
16.如图所示,一处于水平平衡状态的杠杆,杠杆上所标刻度每小格长为3cm.某同学在研究杠杆平衡实验时,在杠杆上的A点挂四个钩码,每个重为1N,用弹簧测力计在B点竖直向上拉杠杆,使杠杆水平平衡,此时弹簧测力计拉力的力臂为 24 cm,弹簧测力计的示数为 2 N.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 已知杠杆上所标刻度每小格长为3cm,可求得弹簧测力计拉力的力臂,根据杠杆平衡条件求得弹簧测力计的示数.
解答: 解:已知杠杆上所标刻度每小格长为3cm.则弹簧测力计拉力的力臂为8×3cm=24cm,
由杠杆平衡条件可知,G钩码×12cm=F×24cm,即4N×12cm=F×24cm,解得F=2N.
故答案为:24;2.
点评: 此题考查杠杆平衡条件的应用,其中明确A点和B点的力臂是解答此题的关键,此题难度不大,属于基础知识.
17.如图是自行车手闸示意图,手闸是一个简单机械,这种简单机械的名称是 杠杆 ,当图中手对车闸的作用力F=10N时,刹车拉线受到力的大小为 40 N.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: (1)在力的作用下,能够绕着固定点转动的硬棒叫杠杆;
(2)根据确定拉线受到的拉力.
解答: 解:
由图知,自行车手闸在力的作用效果下,能够绕着铆钉转动,所以是杠杆的应用;
因为F1L1=F2L2,
所以拉线受到的拉力为F′=×10N=40N.
故答案为:杠杆;40.
点评: 此题考查的是我们对杠杆及其平衡条件的认识和应用,属于基本规律和技能的考查,是一道联系实际的应用题.
18.如图所示,以中点O作为支点,调节杠杆水平平衡,在O点右侧第8格上挂2个钩码,每个钩码的重力为0.5N,用弹簧测力计在O点左侧第4格上竖直向下拉,使杠杆水平平衡,该拉力大小为 2 N;将测力计由图示位置向左转动,杠杆始终保持水平平衡,则测力计的示数将 增大 (选填“增大”、“减小”或“不变”).
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: (1)利用杠杆平衡条件列出等式算出拉力大小;
(2)利用杠杆平衡条件分析拉力对应力臂的变化,确定拉力的变化.
解答: 解:(1)设每一格长度为L,由题意有:G×8L=F×4L,
F===2N;
(2)将测力计由图示位置向左转动,杠杆始终保持水平平衡,拉力对应的力臂变小,根据杠杆平衡条件可知,在右侧钩码和力臂不变情况下,则测力计的示数将增大.
故答案为:2;增大.
点评: 此题考查了利用杠杆平衡条件的计算和分析力的变化,熟知平衡条件是解题关键.
19.如图,重为50N的物体挂在杠杆B点,OB=0.4m,OA=1m,在A端施加竖直向上的拉力F,当F= 20 N(杠杆自重忽略不计)时,杆杆在水平置平衡;测量质量的工具托盘天平也是杠杆,它属于 等臂 (选填“省力”、“费力”或“等臂”)杠杆.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 根据杠杆的平衡条件,将已知条件代入便可得出F的大小;
托盘天平是等臂杠杆.
解答: 解:根据杠杆的平衡条件:
F•OA=G•OB
则:F×1m=50N×0.4m
解得:F=20N
平时测量质量的托盘天平是等臂杠杆.
故答案为:20;等臂.
点评: 本题主要考查了杠杆平衡条件的应用,熟练掌握平衡条件,正确分析杠杆所受的力及对应的力臂,是解决问题的关键.
20.如图所示,在探究杠杆平衡条件的实验中,在支点左侧30cm刻度处挂2个钩码,每个钩码重0.5N,现欲用弹簧测力计沿竖直向上的力拉杠杆,使其在水平位置平衡,则拉力的作用点应在杠杆支点的 左侧 (选填“右侧”或“左侧”),若该点距杠杆支点10cm,此时弹簧测力计示数为 3 N.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: ①左侧钩码对杠杆的作用力向下,使杠杆沿逆时针转动,则弹簧测力计施加的力使杠杆沿顺时针转动,保持杠杆平衡;
②杠杆平衡条件F1L1=F2L2计算出弹簧秤的示数.
解答: 解:钩码对杠杆的作用力使杠杆沿逆时针转动,现欲用弹簧测力计沿竖直向上的力拉杠杆,要保持杠杆保持平衡状态,则弹簧测力计的作用力使杠杆沿顺时针转动,所以要作用在杠杆的左端;
由杠杆平衡条件F1L1=F2L2可得:
F1×10cm=1N×30cm,
解得:F1=3N.
故答案为:左侧;3.
点评: 本题考查了杠杆平衡的特点和平衡条件的应用,明确要使杠杆保持平衡,动力和阻力使杠杆向相反方向转动是解题的关键.
21.如图,AB为能绕B点转动的轻质杠杆,中点C处用细线悬挂一重物,在A端施加一个竖直向上大小为10N的拉力F,使杠杆在水平位置保持平衡,则重物G= 20 N.若保持拉力方向不变,将A端缓慢向上提升一小段距离,在提升的过程中,拉力F将 不变 (选填“增大”、“不变”或“减小”)
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: (1)如图,BA、BC为动力F和阻力G的力臂,知道C是BA的中点,也就知道两力臂的大小关系,知道阻力G的大小,利用杠杆的平衡条件求G的大小;
(2)画出动力和阻力的作用线,找出动力臂的阻力臂,利用三角形的相似关系,确定动力臂和阻力臂的大小关系,再利用杠杆平衡条件分析拉力F的大小变化情况.
解答: 解:
(1)如图,杠杆在水平位置,
LBA=2LBC,
杠杆平衡,FLBA=GLBC,
所以G===2×10N=20N;
(2)杠杆被拉起后,如图所示,
BA′为动力臂,BC′为阻力臂,阻力不变为G,
△BC′D∽△BA′D′,
BC′:BA′=BD:BD′=1:2,
杠杆平衡,
所以F′LBA′=GLBC′,
F′==G=×20N=10N;由此可知当杠杆从A位置匀速提到B位置的过程中,力F的大小不变;
故答案为:20N;不变.
点评: 本题考查了学生对杠杆平衡条件的了解和掌握,能画出杠杆在B位置的力臂并借助三角形相似确定其关系是本题的关键.
22.某人在动物园内,用弹簧测力计称出了一头大象的重量,在称象过程中,他用到了吊车、铁笼和一根很长的配槽钢等辅助工具,操作步骤如下:
a、如图甲所示,将铁笼系于槽钢上的B点,当吊车吊钩在槽钢上的悬吊点移至O点时,槽钢在水平位置平衡.b、将大象引入铁笼,保持吊钩悬吊点O点和铁笼悬挂点B点的位置不变,用弹簧测力计竖直向下拉住槽钢的另一端,使之再次在水平位置平衡,如图乙所示,测得OB=6cm,OA=9m,弹簧测力计的示数为200N,根据上述数据测出了大象的重量.
(1)大象的重为 3×104 N.
(2)设计步骤a的目的是 消除槽钢重力对杠杆平衡的影响 .
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: (1)根据杠杆平衡条件列出再次杠杆平衡的等式,即可计算出大象的重量;
(2)设计步骤a的目的,从列式中分析可知消除槽钢重力对杠杆的影响.
解答: 解:
(1)如图甲,槽钢重力作用在AB中点,槽钢重心到O点距离l1,
槽钢在水平位置平衡时根据杠杆的平衡条件:
G槽钢×l=G铁笼×OB…①
大象引入铁笼后,再次在水平位置平衡时,
G槽钢×l+F×AO=(G象+G铁笼)×OB…②
②﹣①式得:F×AO=G象×OB,
200N×900cm=G象×6cm,
所以:G象=3×104N;
(2)从(1)不难发现设置步骤a的作用:消除槽钢重力对杠杆平衡的影响.
故答案为:3×104;消除槽钢重力对杠杆平衡的影响.
点评: 此题考查了杠杆平衡条件的应用,关键是能够正确分析杠杆所受的力及力臂,在代入数据时一定要细心,并注意单位,物理来源于生活,也服务于生活.
23.如图所示,OB为一轻质杠杆,O为支点,OA=0.6m,OB=0.8m,将重30N的物体悬挂在B点,当杠杆在水平位置平衡时,在A点至少需加 40 N的拉力,这是一个 费力 (填“省力”或“费力”)杠杆.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: (1)杠杆在水平位置平衡,力竖直作用在杠杆上,力臂在杠杆上,力臂最大,用力最小.物体阻碍杠杆逆时针转动,拉力要促使杠杆逆时针转动,所以拉力要竖直向上.分析动力臂和阻力臂,知道阻力、阻力臂、动力臂,根据杠杆平衡条件求出动力.
(2)根据动力臂和阻力臂大小判断是省力杠杆,还是费力杠杆.
解答: 4解:(1)杠杆在水平位置平衡,当拉力竖直向上作用在杠杆上,力臂最长,力最小.
所以动力臂是OA,阻力臂是OB,OB=0.8m,
根据杠杆平衡条件F1L1=F2L2得,F1×0.6m=30N×0.8m,∴F1=40N.
(2)由于动力臂小于阻力臂,这个杠杆是费力杠杆.
故答案为:40;费力.
点评: 本题容易把AB看成阻力臂,一定要明确力的作用线到支点的距离才是力臂.
24.如图所示,轻质木杆AB可以绕O点转动,OA=15cm,OB=5cm,B端细线下所挂3000N的重物静止在水平地面上.人在A端用900N的动力竖直向下拉,木杆水平静止,则重物对水平地面的压力为 300 N,此木杆为 省力 (选填“省力”、“费力”或“等臂”)杠杆.
考点: 杠杆的平衡条件.
专题: 简单机械.
分析: 利用杠杆平衡条件求重物对杠杆的拉力,再对重物进行受力分析,根据重物受力平衡求支持力,再根据力的作用是相互的求解;
动力臂大于阻力臂的杠杆为省力杠杆,
解答: 解:根据杠杆的平衡条件:
FA•OA=FB•OB
又OA=3OB
所以FB=3FA=3×900N=2700N
所以容器对桌面的压力F=G﹣FB=3000N﹣2700N=300N,
此木杆的动力臂大于阻力臂,故为省力杠杆.
故答案为:300;省力.
点评: 此题考查了杠杆平衡条件的应用,首先掌握杠杆的平衡条件,关键分析出杠杆所受的力及对应的力臂.在此题中还用到了密度的知识及重力的计算.
25.如图所示,小亮同学使用钢丝钳剪铁丝.剪铁丝时,动力臂长为10cm,阻力臂长为2cm,若铁丝被剪断需要1000N的力,小亮至少用 200 N的力才能将铁丝剪断;钳柄上套有橡胶套,橡胶套外表面刻有凹凸不平的花纹,目的是增大手与钳柄之间的 摩擦力 .
考点: 杠杆的平衡条件;增大或减小摩擦的方法.
专题: 重力、弹力、摩擦力;简单机械.
分析: 已知动力臂、阻力臂和阻力大小,根据杠杆的平衡条件F1L1=F2L2计算出动力大小;
根据增大摩擦或减小摩擦的方法分析花纹的作用.
解答: 解:从图中可以看出,钢丝钳的动力臂大于阻力臂,因此钢丝钳为省力杠杆,由杠杆平衡条件F1L1=F2L2可得,
F1×10cm=1000N×2cm,
F1=200N;
钳柄套管上一般都刻上花纹,是通过改变接触面的粗糙程度来增大摩擦力的.
故答
展开阅读全文