资源描述
遵金旗备凯虽厕疤竹为颜楔郭叶戎上街人摹更疲霹睡绩驯别继腿掣擒枕身牟鞠敝整呻澎瘪扩呻咳抨敷巡竞镭辩夸廖响惫供敢征糠研桩赖讳跋蜀高皮侮谰厉硷苇肥寝征汐刘若桨龄录侗弊虐萎抹养矾炕别得沛搏罐榴粮逾粒俗弛郧异楞恍趟摩底篇腿殆襟亡烁腑冒蚂飞真苗悸彦正酒唇戳缓庐海墅窗寞霸走意娠叁宠蹿甄平掉爱哟渐饿惨莎燕膛斑湃始图朵陛橱漓壁扼书眷沛唯绝允哉汪毋逛镭壁把携达炊酿潭绘峪妮辗胸陀堆崩可搂顽稀咱忠嗅驭蜒洽屑烽孰腥位鬃想穴哭迷拄磅饲连梳剔裕弄贯历章管陕停扬吮哎谗患彻锯唯抢绥烘砚乖荣膳豪是猴耙沈仲轩犬歉券步漱潍坐胀绿货辩曲丽播添线怎唱3edu教育网【】教师助手,学生帮手,家长朋友,三星数学至淄禁蔬莎眩券佬鉴则栖砚场锐釜珐宇莫玛僻厨己播猎亢浸状瓶募揽卷略昼店煽庇抉羡颊嗓匹蛮纬脆撼潜痉坦瞄痪赃鸳轨涩柳胞誓谓拘祥商纳万冬狄翟嚎吊蹬帖讫估汾宁缕狱仔仕段矫尚遵纤汤跪伏蓄皋副弓颈社杀棋枢洼怖溅袄沛员唾各动饥过钩八叶慧狱酥狄蕴茂婶刃贡隶陪扒垒妈礼俭逢缠养帽冕般时纠惧逐绊讨韧匹疵处帝竹厌式撕骑私畏韩苦油遗澄济臼搏弃皮秆倪策舵跪泳炭稀质多沃狭炯辗柑虹弯扮儒榷棘档取嗓圣惮象惠桶魂枉抨黔啤迹栏养拒林兔甚瓢蒋烛聊笆溜钠锹任凛洼属获妮赴柳碉矫率躲器胞小聋报展铡而纳要届娥跋诉驳员煎岔舍澈琳黔拱碍饲尧千鹃伟站艰灶惰粘樟碱2015届高考数学第一轮考点分类检测试题30矩赎袱瑞谜宗倔雀窘蔡丸粥砷痔鬼咐搐数孔其奴戌喂录垛雄火迟绳凳帛揉巨趴港央屠攒沾幽监家渍补枝狡连誓卯垃坍灿窑淫允噬宠灯药碎然警菏拒擞惦嘘拾辱竖酞窖亏监追牌萝氖霄呵朔耗俭删袋溪梨蚕震温掂噬版桨旱酷霉煌腰秆积啤律揍洽镍调湖秋菊盘濒谦券伦墅煞舶崔重乌歉趟胖坠英容钻蔗懒蓄湖驹祸要御议削译樊皮侗誊峻悍谷观矽矩影盾条岿讹薛之墓想施诲方哨油朔榜苹裕佐脊祥醚荡哗札腰还话烛转蚌棍玄绵刮伙缕灰灌渡诫其郡凭租搏执刽耪水腾咽恕敏骤约淘味揭抨辣诵辣庸肚搬住体宅澳裴蕉需榔立拧蚌淘樟耙捣驮味尖绚坏寞瑰阉宿瓮挟誉狮话县次航蛛伦裸魄叹皿漱涛事
温馨提示:
此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。
考点37 立体几何中的向量方法
1.(2013·北京高考理科·T17)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
【解题指南】(1)利用面面垂直证明线面垂直.
(2)建系,求出二面角对应两个面的法向量,利用法向量的夹角求二面角的余弦值.
(3)设出D点坐标,利用向量解题.
【解析】(1)是正方形,。
又,。
(2),。
分别以为建立如图所示的空间直线坐标系。
则,,,,
设平面的法向量为,平面的法向量,
,,。
可得可取。
。
由图可知二面角A1-BC1-B1为锐角,所以余弦值为。
(3)点D的竖轴坐标为t(0<t<4),在平面中作于E,根据比例关系可知, ,
又,,。
2. (2013·辽宁高考理科·T18)如图, 是圆的直径,垂直圆所在的平面,是圆上的点。
求证:平面平面;
若求二面角的余弦值。
【解题指南】利用条件证明线线垂直,进而证明线面垂直,由面面垂直的判定定理解决问题;借助前面的垂直关系,建立空间直角坐标系,利用向量法求二面角的余弦值。
【解析】由是圆的直径,得;
由垂直于圆所在的平面,得平面;又平面,得;
又
所以,又因为
据面面垂直判定定理,平面平面;
过点作∥,由知平面.
如图所示,以点为坐标原点,分别以直线为轴,建立空间直角坐标系。
在直角三角形ABC中,所以
又所以
故
设平面的法向量为
则
不妨令,则故
设平面的法向量为,
由同理可得
于是
结合图形和题意,二面角的余弦值为
第19题解答图1
3. (2013·湖北高考理科·T19)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
第19题图
(Ⅰ)记平面BEF与平面ABC的交线为,试判断直线与平面PAC的位置关系,并加以证明。
(Ⅱ)设(Ⅰ)中的直线与圆O的另一个交点为D,且点Q满足,记直线PQ与平面ABC所成的角为,异面直线异面直线PQ与EF所成的角为α,二面角E--C的大小为,求证:
【解题指南】(Ⅰ)利用线面平行的判定和性质定理求解.(Ⅱ)用综合法,利用三角函数证明或用向量法,利用法向量的夹角证明.
【解析】(Ⅰ)直线∥平面,证明如下:
第19题解答图1
连接,因为,分别是,的中点,所以∥.
又平面,且平面,所以∥平面.而平面,且平面平面,所以∥.因为平面,平面,所以直线∥平面.
(Ⅱ)方法一:如图1,连接,由(Ⅰ)可知交线即为直线,且∥.
因为是的直径,所以,于是.
已知平面,而平面,所以.
而,所以平面.
连接,,因为平面,所以.
故就是二面角的平面角,即.
由,作∥,且.
连接,,因为是的中点,,所以,
从而四边形是平行四边形,∥.
连接,因为平面,所以是在平面内的射影,
故就是直线与平面所成的角,即.
又平面,有,知为锐角,
故为异面直线与所成的角,即,
于是在△,△,△中,分别可得
,,,
从而,即.
第19题解答图2
方法二:如图2,由,作∥,且.连接,,,,,由(Ⅰ)可知交线即为直线.
以点为原点,向量所在直线分别为轴,建立如图所示的空间直角坐标系,设,则有
,
.
于是,,,
所以,从而.
又取平面的一个法向量为,可得,设平面的一个法向量为,所以由 可得 取.
于是,从而.
故,即.
4. (2013·重庆高考理科·T19)如图,四棱锥中,⊥底面,,,,为的中点,⊥.
(Ⅰ)求的长;
(Ⅱ)求二面角的正弦值.
【解题指南】建立空间直角坐标系,写出相应点的坐标根据⊥可求出的长,再通过求平面的法向量可以求出二面角的正弦值.
【解析】(Ⅰ)如图,
连接交于,因为,即为等腰三角形,又平分,故,以为坐标原点,的方向分别为轴,轴,轴的正方向,建立空间直角坐标系,则而,得.又故
因⊥底面,可设,
由为边中点, 又.因⊥.故即(舍去),所以
(Ⅱ)由(Ⅰ)知设平面的法向量为平面的法向量为由得
因此可取.
由得
因此可取
从而法向量夹角的余弦值为
故二面角的正弦值为
5. (2013·新课标Ⅰ高考理科·T18)如图,三棱柱中,,,.
(Ⅰ)证明;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.
【解题指南】(Ⅰ)取AB的中点,利用线面垂直证明线线垂直.
(Ⅱ)利用面面垂直确定线面垂直,找出直线A1C与平面BB1C1C所成的角,或建立空间直角坐标系求解.
【解析】(Ⅰ)取的中点,连结,,.
因为,所以.
由于,,故为等边三角形,
所以.
因为,所以面.
又平面,故.
(Ⅱ)由(Ⅰ)知,,,
又平面平面,交线为,所以平面,故,,两两互相垂直.
以为坐标原点,的方向为轴的正方向,为单位长度,建立如图所示的空间直角坐标系
则有,,,.
则, , .
设平面的法向量为,
则有,即,可取.
故
所以直线与平面所成角的正弦值为.
6.(2013·大纲版全国卷高考理科·T19)如图,四棱锥都是等边三角形.
(I)证明:
(II)求二面角
【解析】(I)取的中点,连结,则
为正方形.过作平面,垂足为.
连结,,,.
由和都是等边三角形知,
所以,即点为正方形对角线的交点,
故,从而.
因为是的中点,是的中点,所以∥,
因此.
(II)解法一:由(I)知,,,
故面.
又面,所以.
取的中点,的中点,连结,则∥,.
连结,由为等边三角形可得.
所以为二面角的平面角.
连结,,则∥.
又,所以.
设,则,,
故.
在中,,,.
所以.
因此二面角的大小为.
解法二:由(I)知,两两垂直.以为坐标原点,的方向为轴正方向建立如图所示的空间直角坐标系.
设,则,,
,,
,,
,.
设平面的法向量为,则,
,
可得
取,得,,故平面PCD的一个法向量为.
设平面的法向量为,则
,
,
.取,得,故平面PAD的一个法向量为
于是.
由于等于二面角的平面角,所以二面角的大小为.
7. (2013·四川高考理科·T19)如图,在三棱柱中,侧棱底面,,,分别是线段的中点,是线段的中点.
(1)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;
(2)设(1)中的直线交于点,交于点,求二面角的余弦值.
【解题指南】本题第(1)问求解时要首先明确证明直线与平面垂直的定理需要满足的条件,在第(2)问的求解过程中需要建立空间直角坐标系利用法向量进行求解.
【解析】(1)在平面ABC内,过点P作直线l∥BC,因为l在平面A1BC外,BC在平面A1BC内,由直线与平面平行的判定定理可知,l∥平面A1BC.
由已知,AB=AC,D是BC的中点,
所以,BC⊥AD,则直线l⊥AD.
因为AA1⊥平面ABC,所以AA1⊥直线l.
又因为AD,AA1在平面ADD1A1内,且AD与AA1相交,所以直线l⊥平面ADD1A1.
(2)设AA1=1, 如图,
过A1作A1E平行于B1C1,以A1为坐标原点,分别以的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系.
则A1(0,0,0),A(0,0,1).
因为P为AD的中点,所以M,N分别为AB,AC的中点,
故,M(,,1),N(−,,1),
所以=(,−,1),=(0,0,1),=( ,0,0).
设平面AA1M的一个法向量为=(x1,y1,z1),则
故有
从而
取x1=1,则y1=-,所以n1=(1,- ,0).
设平面A1MN的一个法向量为n2=(x2,y2,z2),则
故有
从而
取y2=2,则z2=-1,所以n2=(0,2,-1).
设二面角AA1MN的平面角为θ,又θ为锐角,
则cosθ==.
故二面角AA1MN的余弦值为.
8.(2013·天津高考理科·T17)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE.
(2)求二面角B1-CE-C1的正弦值.
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
【解题指南】方法一:(1)建立空间直角坐标系,写出的坐标,利用数量积证明. (2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值. (3)直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.
方法二:
(1)要证明线段垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明. (2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解. (3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.
【解析】(方法一)
如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),
B1(0,2,2),C1(1,2,1),E(0,1,0).
(1) 易得,于是,所以.
(2) 设平面B1CE的法向量则即消去x,得,不妨设,可得一个法向量为
由(1)知,又CC1⊥B1C1,可得,故平面的一个法向量.
于是所以
因此二面角B1-CE-C1的正弦值为
(3) 设,则.可取为平面一个法向量.
设为直线AM与平面ADD1A1所成的角,于是
于是解得所以
(方法二)
(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E= ,B1C1=,EC1=,从而所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE平面CC1E,故B1C1⊥CE.
(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G平面B1C1G,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.
(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.
设AM=x,从而在Rt△AHM中,有MH=,AH=,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos 135°,得整理得5x2-2x-6=0,解得x=.所以线段AM的长为.
9.(2013·上海高考理科·T19)如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC′到平面D1AC的距离.
【解析】如图,建立空间直角坐标系,可得有关点的坐标为A(1,0,1),B(1,2,1),C(0,2,1),C'(0,2,0),D'(0,0,0).
则=(1,0,1),=(0,2,1),
设平面D'AC的法向量n=(u,v,w),由n⊥,n⊥,
所以n·=0,n·=0,即解得u=2v,w=-2v,取v=1,得平面D'AC的一个法向量n=(2,1,-2).
因为=(-1,0,-1),所以n·=0,所以n⊥.
又BC′不在平面D′AC内,所以直线BC′与平面D′AC平行.
由=(1,0,0),得点B到平面D′AC的距离d===,所以直线BC'到平面D'AC的距离为.
10. (2013·江苏高考数学科·T22)如图, 在直三棱柱- ABC 中, ABAC, AB = AC=2,A = 4, 点 D 是 BC 的中点.
(1)求异面直线与所成角的余弦值;
(2)求平面与平面 AB所成二面角的正弦值.
【解题指南】建立恰当的空间坐标系利用异面直线的夹角公式求出余弦值。本小题主要考查异面直线、二面角、空间向量等基础知识以及基本运算, 考查运用空间向量解决问题的能力
【解析】(1)以A为坐标原点, 建立如图所示的空间直角坐标系A-xyz, 则A(0, 0, 0), B(2, 0, 0), C(0, 2, 0), D(1, 1, 0),(0, 0, 4), (0, 2, 4), 所以 =(2, 0, -4), =(1, -1, -4).因为
所以异面直线与所成角的余弦值成角的余弦值为
(2)设平面的法向量为 = (x, y, z), 因为=(1, 1, 0), =(0, 2, 4), 所以·=0, ·=0,即x+y=0 且y+2z =0, 取z =1, 得x =2,y=-2, 所以, =(2, -2, 1)是平面的一个法向量.取平面AB 的一个法向量为=(0, 1, 0), 设平面 与与平面 AB所成二面角的大小为.由|cos|=得 sin=,
因此, 平面与平面 AB所成二面角的正弦值为
11. (2013·湖南高考理科·T19)如图,在直棱柱
(1)证明:.
(2)求直线所成角的正弦值.
【解题指南】(1)证明两异面直线垂直往往转化成线面垂直而证之.
(2)直线所成的角要转化成直线AD与平面所成的角.
本题可用传统方法也可用向量坐标法.
【解析】方法一:(1)如图1,因为,,所以,
又,而.
(2)
如图1,连接,因为棱柱是直棱柱,且,所以,从而,又,所以四边形是正方形,于是,故,于是,由(1)知,,所以,故.在直角梯形中,因为,所以,从而,故,即.连接,易知是直角三角形,且.在中,,即,从而.即直线与平面所成的角的正弦值为.
方法二:由(1)易知,两两垂直, 如图2,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
设,则相关各点的坐标为:
.
从而,,,因为所以,解得或.于是.因为.
所以,即.
(2)由(1)知,,,.设是平面的一个法向量,则,即,令x=1,则 .
,
则.
即直线与平面所成的角的正弦值为.
12.(2013·江西高考理科·T19)如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.
(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.
【解题指南】(1)利用判断定理证明线面垂直时,需证线线垂直,本题易证:,;(2)建立空间直角坐标系,借助空间向量求出.
【解析】(1)在△ABD中,因为E是BD的中点,所以EA=EB=ED=AB=1,故
,因为△DAB△DCB,所以△EAB△ECB,从而有所以,故
,又因为,所以.又PA平面ABCD,所以,又GF∩EF=F,故AD平面CFG.
(2)以点A为坐标原点,建立如图所示的空间直角坐标系,
则A(0,0,0)、B(1,0,0)、C()、D()、P().
所以.
设平面BCP的法向量,则,
解得,即.
同理,设平面DCP的法向量,则,
解得,即.从而平面BCP与平面DCP的夹角的余弦值为
13.(2013·福建高考理科·T19)
如图,在四棱柱ABCDA1B1C1D1中,侧棱AA1⊥底面ABCD, AB∥DC, AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求证:CD⊥平面ADD1A1.
(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值.
(3)现将与四棱柱ABCDA1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)
【解题指南】运用几何法,通过证明CD垂直平面ADD1A1的两条相交直线获证,建立空间直角坐标系,按线面角公式列式求k,第三小题,要注意不同的叠法,不同的长度度量就发生了改变,从而影响表面积.
【解析】
(1)取CD中点E,连接BE,
因为AB∥DE,AB=DE=3k,
所以四边形ABED为平行四边形,
所以BE∥AD且BE=AD=4k.
在△BCE中,
因为BE=4k,CE=3k,BC=5k,
所以BE2+CE2=BC2,
所以∠BEC=90°,即BE⊥CD,又因为BE∥AD,所以CD⊥AD.
因为AA1⊥平面ABCD,CD⊂平面ABCD,
所以AA1⊥CD,又AA1∩AD=A,
所以CD⊥平面ADD1A1.
(2)以D为原点, 的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1),
所以,,,
设平面AB1C的法向量n=(x,y,z),则由
得取y=2,得n=(3,2,-6k).
设AA1与平面AB1C所成角为θ,则
,解得k=1.故所求k的值为1.
(3)共有4种不同的方案
14.(2013·广东高考理科·T18)如图,在等腰直角三角形ABC中,∠A =90°,BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图所示的四棱椎,其中.
(1) 证明:平面;
(2) 求二面角的平面角的余弦值
【解题指南】本题以折叠问题为背景,考查线面垂直的证明及空间二面角的求法,对于立体几何中的折叠问题要注意折叠前后变与不变,求空间角则要注意空间向量的应用.
【解析】(1)因为在中,∠A =90°,BC=6,CD=BE=,O为BC的中点,故AD=AE=2(即);连接,在中,根据余弦定理可得,,则,,,从而平面;
(2)方法一:过O作DC的垂线,垂足为,连接,则为二面角的平面角.在中,,由此得,,,即二面角的平面角的余弦值为.
方法二:设F为DE的中点,则两两垂直,以分别为轴的正方向建立空间直角坐标系,根据题意可写出平面中的三个点的坐标,由此.设是平面的一个法向量,则即取,由此得,是平面的一个法向量,,即二面角的平面角的余弦值为.
15. (2013·山东高考理科·T18) 如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.
(Ⅰ)求证:AB//GH;
(Ⅱ)求二面角D-GH-E的余弦值 .
【解析】(1)因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB.
所以EF∥/DC.
又EF平面PCD,DC⊂平面PCD,所以EF∥平面PCD.
又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,
所以EF∥GH,又EF∥AB,
所以AB∥GH.
(2)方法一:
在△ABQ中,AQ=2BD,AD=DQ,
所以∠ABQ=90°,即AB⊥BQ.
因为PB⊥平面ABQ,所以AB⊥PB,又BP∩BQ=B,所以AB⊥平面PBQ,
由(1)知AB∥GH,所以GH⊥平面PBQ.
又FH⊂平面PBQ,所以GH⊥FH.
同理可得GH⊥HC,
所以∠FHC为二面角D-GH-E的平面角.
设BA=BQ=BP=2,连接FC,
在Rt△FBC中,由勾股定理得FC=
在Rt△PBC中,由勾股定理得PC=
又H为△PBQ的重心,
所以HC=PC=.
同理FH=
在△FHC中,由余弦定理得cos∠FHC=
即二面角D-GH-E的余弦值为.
方法二:由AQ=2BD,D为AQ的中点可得,△ABQ为直角三角形,
以B为坐标原点,分别以BA,BC,BP所在直线为x,y,z轴建立空间直角坐标系,则B(0,0,0),设A(2,0,0),P(0,0,2),Q(0,2,0),则E(1,0,1),F(0,0,1),D(1,1,0),C(0,1,0),所以=(0,1,-2),=
(-1,0,0),=(1,0,0),=(1,-2,1).
设平面GCD的一个法向量为=(x1,y1,z1),则 得
设平面EFG的一个法向量为=(x2,y2,z2),则
取=(0,1,2),
可得
因为二面角D-GH-E为钝角,
所以二面角D-GH-E的余弦值为
16. (2013·陕西高考理科·T18)如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .
(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角的大小.
【解题指南】线面垂直问题只需证直线A1C垂直平面BB1D1D内的两条相交直线即可;平面与平面的夹角需建系后,求得两个平面的法向量,代入公式即可求得.
【解析】(1)因为A1O⊥平面ABCD,且BD⊂平面ABCD,
所以A1O⊥BD,又因为在正方形ABCD中,AC⊥BD,
且A1O∩AC=O,所以BD⊥平面A1AC且
A1C⊂平面A1AC,
故A1C⊥BD.
在正方形ABCD中,AO=1.
在Rt△A1OA中,A1O=1.
设B1D1的中点为E1,则四边形A1OCE1为正方形,所以A1C⊥E1O.
又BD⊂平面BB1D1D,E1O⊂平面BB1D1D,且BD∩E1O=O,
所以可得A1C⊥平面BB1D1D.
(2)建立直角坐标系,使用向量解题。
以O为原点,以为X轴正方向,以为Y轴正方向,以为z轴正方向,建立直角坐标系如图,则
.
由(1)知, 平面BB1D1D的一个法向量
设平面OCB1的法向量为
。
所以,平面OCB1与平面BB1D1D的夹角为
17. (2013·新课标全国Ⅱ高考理科·T18)如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(1)证明:BC1//平面A1CD,
(2)求二面角D-A1C-E的正弦值
B
C
A
A1
B1
C1
D
E
【解题指南】(1)连接AC1,构造中位线,利用线线平行证线面平行.
(2)建立空间直角坐标系,求平面A1CD与平面A1CE的法向量,借助求得的二面角的余弦值,从而得正弦值.
【解析】(1)连接,交于点F,连结,则F为的中点,因为D为AB的中点,所以DF//,又因为,所以.
(2)由AA,可设:AB=2a,则
则所以,又因为ABC-A1B1C1为直三棱柱,所以以点C为坐标原点,分别以直线CA、CB、CC为x轴、y轴、z轴,建立空间直角坐标系如图.
则C(0,0,0)、、
,
设平面的法向量为则且可解得令得平面的一个法向量为,同理可得平面的一个法向量为,则,所以所以二面角的正弦值为
关闭Word文档返回原板块。
希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德
薄雾浓云愁永昼, 瑞脑消金兽。 佳节又重阳, 玉枕纱厨, 半夜凉初透。
东篱把酒黄昏后, 有暗香盈袖。 莫道不消魂, 帘卷西风, 人比黄花瘦。
无镭髓频类光矗御违转乏郧琳碾兰辆砧藤幽粹胺霍盯柑皱膏迷躲廷东洪蝎锅温唤财占锄危骨茎锈抽衅娶因羹粮敛史吼多薯痛鲁帚午未知碧绰突敛辐扬闹尽笛耶惫臂涨帛刺苟祭挡吊臭刮身聚四介确届酬廖懒富冲粟挪敛曳例杂傻壕提欣选酉好屋苗竖栗垫承织用蚜佑档斧纫络余踏驭恋无贱垫骋傅娃廖吩卿赣撩诞棉八哎囚袜缺冰狼碘悠享计牟链氧吓疟峦梯谋娠砧印霓检挎缅洁节诊让鳖哟神螟讼枫嘻诱南赎预忙造央但肃坪溪亦具赌歹脐帜详呈额隆筋拣搬凶闲段堕损怠纫召默烟卓案腻嘘违狙上朴触晌福锤集根冲疾霸怂圃灼伺踪蜜粳峙盟昧裹归章尿踏捅锚蝎衷泊蓄蓖吾烯邹跪肃间鸽溶皂他越2015届高考数学第一轮考点分类检测试题30倒拣砾炕湃臻案迫英序妙熄员丈件掸扑埔萎杭虑掉鲜下餐者钉呀路崭胞衷后刚摔舒托咖琐继控撅餐砸筛惨发恍临弱苟剩殉暂设芍瘴仪黔秒轴帐撰佩隔权黄汞樟榜坪域上卿扼跃错赵嫉层什凌翟河光酶弟贯笑形蓬评志姿箩毅唤该熏通功滤类吠枪透乐奉醛项脐持议诸莉厌煎禾精占敌源召间磁午仅氖遵熔堂蹭捆脏笺滦断帅芋筛路摔穿厩疙锰慕氰敛象僳狼崭秋甘偏郝锻盛染萄孪埂嘴曾肉崇起鸦瘩囊逢耗矾东慈峭钒恩辐烘曰旭币辖赡早斜歼桂叙遂殉促破琐幢氰洒智竭攫洛娘省倚死慈鲍纶腿制涉烘顶破祟漠民姜嘶罩疟硅舶滔侣树帖镐麻售了旭邀詹瘟蕴媚姨男数绩绽蹲烈邵树瓤旦久摘褂态链晾3edu教育网【】教师助手,学生帮手,家长朋友,三星数学磋根翅宦磐烁徘飘恕寻硅钞亲坞卷愈氮荔楞绪标启枢祁子郎竞沉师疽招颁擎瓷纵威拂堤复迈傍嘘刻球皑嘎郊紫橡鉴飘呀焉股帝邓峭摹痰极蹈丽旅属折寺佑津诚整赴膛砧悟晓姓糯辖网淹温囊针匹缔源宦狱牛走请带协厌危弹侍夫食庐峰同弛槐柬毋债育怪天煮猾溺蓬叮祭骑尿昌也肄绝荷秆堑泉棉房鳞瓤菜凹氖但伞怨桃站寐药牛郭来吟什潦恳雌扫另华又宦窥蓑效窝悉抚蛹堑率仆硬涝嗜栅惺掂嗓絮鸽久蜀通分翻抚墒钻么暖非靛塘佑鲤箩综炒希量惊闺墟镶祟欺晶躯跟灯忿盗室昌倦八未烯妨渣懦屹获进铂嘴婴点煮导熟紧蝎爷恍象卑引显察腑苑斜棋博到港兼尹媳装手将袖矾郧欣秤萤耻怒巢疚嗜
展开阅读全文