1、2023 版小学数学课程标准修订稿(最新)第一部分 前 言 3 第二部分 课程目的 7 一、总体目的 7 二、学段目的 8 第三部分 内容标准 11 第一学段(1-3 年级)11 一、数与代数 11 二、图形与几何 12 三、记录与概率 13 四、综合与实践 13 第二学段(4-6 年级)13 一、数与代数 13 二、图形与几何 14 三、记录与概率 16 四、综合与实践 16 第四部分 实行建议 26 一、教学建议 26 二、评价建议 31 三、教材编写建议 38 四、课程资源开发与运用建议 43 附录 1 课程目的的术语解释 第一部分 前 言 数学是研究数量关系和空间形式的科学。数学与人类
2、发展和社会进步息息相关,特别是随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和平常生活的各个方面。数学作为对于客观现象抽象概括 而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,并且在人文科学与社会科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应当具有的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。一、课程性质 义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学的抽象性、严谨性和应
3、用广泛性,决定了数学课程在义务教育阶段的独特作用。义务教育的数学课程是学生未来生活、工作和学习的重要基础。数学课程有助于学生掌握必备的基础知识和基本技能;有助于培养学生的抽象思维和推理能力;有助于培养学生的创新意识和实践能力;有助于学生在情感、态度与价值观等方面得到发展。二、课程基本理念 1数学课程应致力于实现义务教育阶段的培养目的,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。2课程内容既要反映社会的需要、数学的特点,也要符合学生的认知规律。它不仅涉及数学的结果,也涉及数学结果的形成过程和数学思想方法。课程内容的选择要贴近学生的实际
4、,有助于学生体验与理解、思考与探索。课程内容的组织要解决好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。3教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学活动应激发学生爱好,调动学生积极性,引发学生的数学思考,鼓励学生的发明性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。学生学习应当是一个生动活泼的、积极的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。学生应当有足够的时间和空间经
5、历观测、实验、猜测、计算、推理、验证等活动过程。教师教学应当以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,解决好讲授与学生自主学习的关系,引导学生独立思考、积极探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。4学习评价的重要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改善教师教学。应建立目的多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生结识自我、建立信心。5信息技术的发展对数
6、学教育的价值、目的、内容以及教学方式产生了很大的影响。数学课程的设计与实行应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充足考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改善教与学的方式,使学生乐意并有也许投入到现实的、探索性的数学活动中去。三、课程设计思绪 义务教育阶段数学课程的设计,充足考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特性,有助于激发学生的学习爱好,引发数学思考;充足考虑数学自身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已
7、有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。(一)关于学段 为了体现义务教育数学课程的整体性,统筹考虑九年的课程内容。同时,根据学生发展的生理和心理特性,将九年的学习时间划分为三个学段:第一学段(1-3 年级)、第二学段(4-6 年级)、第三学段(7-9 年级)。(二)关于目的 义务教育阶段数学课程目的分为总体目的和学段目的,从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。数学课程目的涉及结果目的和过程目的。结果目的使用“了解、理解、掌握、运用”等术语表述,过程目的使用“经历、体验、探索”等术语表(术语解释见附录 1)。(三)关于课程内容
8、 在各学段中,安排了四个部分的课程内容:“数与代数”,“图形与几何”,“记录与概率”,“综合与实践”。“综合与实践”内容设立的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识,应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。数与代数的重要内容有:数的结识,数的表达,数的大小,数的运算,数量的估计;字母表达数,代数式及其运算;方程、方程组、不等式、函数等。图形与几何重要内容有:空间和平面基本图形的结识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。记录与概率重要内容有:收集、整理和描
9、述数据,涉及简朴抽样、整理调查数据、绘制记录图表等;解决数据,涉及计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简朴的推断;简朴随机事件及其发生的概率。综合与实践是一类以问题为载体、以学生自主参与为主的学习活动。在学习活动中,学生将综合运用数与代数、图形与几何、记录与概率等知识和方法解决问题。“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完毕,也可以课内外相结合。在数学教学中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。数据分析观念、运算能力、推理能力和模型思想。数感重要是指
10、关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。符号意识重要是指可以理解并且运用符号表达数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。空间观念重要是指根据物体特性抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和互相之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。几何直观重要是指运用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思绪,预测结
11、果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。数据分析观念涉及:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过度析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据也许不同,另一方面只要有足够的数据就也许从中发现规律。运算能力重要是指可以根据法则和运算律对的地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使
12、用的思维方式。推理一般涉及合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(涉及定义、公理、定理等)和拟定的规则(涉及运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,合情推理用于探索思绪,发现结论;演绎推理用于证明结论。模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程涉及:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表达数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的
13、爱好和应用意识。为了适应时代发展对人才培养的需要,义务教育阶段的数学教育要特别注重发展学生的应用意识应用意识和创新意识创新意识。应用意识应用意识有两个方面的含义,一方面故意识运用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中问题;另一方面,结识到现实生活中蕴含着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应当培养学生的应用意识,综合实践活动是培养应用意识很好的载体。创新意识创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想
14、和规律,并加以验证,是创新的重要方法。创新意识的培养应当从义务教育阶段做起,贯穿数学教育的始终。第二部分 课程目的 一、总体目的 通过义务教育阶段的数学学习,学生能:1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。2.体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。3.了解数学的价值,提高学习数学的爱好,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。总体目的从以下四个方面具体阐述:知识技能 经历数与代数的抽象、运算与建模等过程,掌握
15、数与代数的基础知识和基本技能。经历图形的抽象、分类、性质探讨、运动、位置拟定等过程,掌握图形与几何的基础知识和基本技能。经历在实际问题中收集和解决数据、运用数据分析问题、获取信息的过程,掌握记录与概率的基础知识和基本技能。参与综合实践活动,积累综合运用数学知识、技能和方法等解决简朴问题的数学活动经验。数学思考 建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。体会记录方法的意义,发展数据分析观念,感受随机现象。在参与观测、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清楚地表达自己的想法。学会独立思考,体会数学的基本思想和思维方式。问题 解
16、决 初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简朴的实际问题,增强应用意识,提高实践能力。获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。学会与别人合作交流。初步形成评价与反思的意识。情感态度 积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。体会数学的特点,了解数学的价值。养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。总体目的的这四个方面,不是互相独立和割裂的,而是一个密切联系、互相交融的有机整体。在课程设计和教学活动组织中,应同时兼顾这四个方面的目的
17、。这些目的的整体实现,是学生受到良好数学教育的标志,它对学生的全面、连续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有助于其他三个目的的实现。二、学段目的 第一学段(1-3 年级)知识技能 1经历从平常生活中抽象出数的过程,理解万以内数的意义,初步结识分数和小数;理解常见的量;体会四则运算的意义,掌握必要的运算技能;在具体情境中,能进行简朴的估算。2经历从实际物体中抽象出简朴几何体和平面图形的过程,了解一些简朴几何体和常见的平面图形;感受平移、旋转、轴对称现象;结识物体的相对位置。掌握初步的测量、识图和画图的技能。3经历简朴的数据收集、整
18、理、分析的过程,了解简朴的数据解决方法。数学思考 1在运用数及适当的度量单位描述现实生活中的简朴现象,以及对运算结果进行估计的过程中,发展数感;在从物体中抽象出几何图形、想像图形的运动和位置的过程中,发展空间观念。2能对调查过程中获得的简朴数据进行归类,体验数据中蕴涵着信息。3.在观测、操作等活动中,能提出一些简朴的猜想。4会独立思考问题,表达自己的想法。问题解决 1能在教师的指导下,从平常生活中发现和提出简朴的数学问题,并尝试解决。2了解分析问题和解决问题的一些基本方法,知道同一个问题可以有不同的解决方法。3体验与别人合作交流解决问题的过程。4尝试回顾解决问题的过程。情感态度 1对身边与数学
19、有关的事物有好奇心,能参与数学活动。2在别人帮助下,感受数学活动中的成功,能尝试克服困难。3了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。4能倾听别人的意见,尝试对别人的想法提出建议,知道应当尊重客观事实。第二学段(4-6 年级)知识技能 1体验从具体情境中抽象出数的过程,结识万以上的数;理解分数、小数、百分数的意义,了解负数;掌握必要的运算技能;理解估算的意义;能用方程表达简朴的数量关系,能解简朴的方程。2探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特性;体验简朴图形的运动过程,能在方格纸上画出简朴图形运动后的图形,了解拟定物体位置的一些基本方法;掌握测量
20、、识图和画图的基本方法。3经历数据的收集、整理和分析的过程,掌握一些简朴的数据解决技能;体验随机事件和事件发生的等也许性。4能借助计算器解决简朴的应用问题。数学思考 1初步形成数感和空间观念,感受符号和几何直观的作用。2进一步结识到数据中蕴含着信息,发展数据分析观念;感受随机现象。3在观测、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。4.会独立思考,体会一些数学的基本思想。问题解决 1尝试从平常生活中发现并提出简朴的数学问题,并运用一些知识加以解决。2能探索分析和解决简朴问题的有效方法,了解解决问题方法的多样性。3经历与别人合作解决问题
21、的过程,尝试解释自己的思考过程。4能回顾解决问题的过程,初步判断结果的合理性。情感态度 1乐意了解社会生活中与数学相关的信息,积极参与数学学习活动。2在别人的鼓励和引导下,体验克服困难、解决问题的过程,相信自己可以学好数学。3在运用数学知识和方法解决问题的过程中,结识数学的价值。4初步养成乐于思考、敢于质疑、实事求是等良好品质。第三部分 内容标准 第一学段(1-3 年级)一、数与代数(一)数的结识 1.在现实情境中理解万以内数的意义,能认、读、写万以内的数,能用数表达物体的个数或事物的顺序和位置。2.能说出各数位的名称,理解各数位上的数字表达的意义;知道用算盘可以表达多位数。(参见例 1)3.
22、理解符号,的含义,能用符号和词语描述万以内数的大小(参见例 2)。4.在具体情境中感受大数的意义,并能进行估计(参见例 3)。5.能结合具体情境初步结识小数和分数,能读、写小数和分数。6.能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。7.能运用数表达平常生活中的一些事物,并进行交流(参见例 4)。(二)数的运算 1.结合具体情境,体会整数四则运算的意义(参见例 5)。2.能纯熟地口算 20 以内的加减法和表内乘除法,能口算百以内的加减法和一位数乘除两位数。3.能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。4能进行简朴的整数四则混合运算(
23、两步)。5.会进行同分母分数(分母小于 10)的加减运算以及一位小数的加减运算。6.能结合具体情境进行估算,并解释估算的过程(参见例 6)。7.经历与别人交流各自算法的过程。8.能运用数及数的运算解决生活中的简朴问题,并能对结果的实际意义作出解释(参见例 7)。(三)常见的量 1.在现实情境中,结识元、角、分,并了解它们之间的关系。2.能结识钟表,了解 24 时记时法;结合自己的生活经验,体验时间的长短(参见例 8)。3.结识年、月、日,了解它们之间的关系。4.在现实情境中,感受并结识克、公斤、吨,能进行简朴的单位换算。5.结合生活实际,解决与常见的量有关的简朴问题。(四)探索规律 探索简朴的
24、变化规律(参见例 9、例 10)。二、图形与几何(一)图形的结识 1.能通过实物和模型辨认长方体、正方体、圆柱和球等几何体。2.能根据具体事物、照片或直观图辨认从不同角度观测到的简朴物体(参见例 11)。3.辨认长方形、正方形、三角形、平行四边形、圆等简朴图形。4.通过观测、操作,初步结识长方形、正方形的特性。5.会用长方形、正方形、三角形、平行四边形或圆拼图。6.结合生活情境结识角,了解直角、锐角和钝角。7.能对简朴几何体和图形进行分类(参见例 21)。(二)测量 1.结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性。2.在实践活动中,体会并结识长度单位千米、米、
25、厘米,知道分米、毫米,能进行简朴的单位换算,能恰本地选择长度单位(参见例 12)。3.能估测一些物体的长度,并进行测量。4.结合实例结识周长,并能测量简朴图形的周长(参见例 13),探索并掌握长方形、正方形的周长公式。5.结合实例结识面积,体会并结识面积单位厘米2、分米2、米2,能进行简朴的单位换算。6.探索并掌握长方形、正方形的面积公式,能估计给定简朴图形的面积(参见例 14)。(三)图形的运动 1.结合实例,感知平移、旋转、轴对称现象(参见例 15)。2.能辨认简朴图形平移后的图形(参见例 16)。3.通过观测、操作,结识轴对称图形。(四)图形与位置 1.会用上、下,左、右,前、后描述物体
26、的相对位置。2.给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,能用这些词语描绘物体所在的方向(参见例 17)。三、记录与概率 1.能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系(参见例 18)。2.经历简朴的数据收集和整理过程,了解调查、测量等收集数据的简朴方法,并运用自己的方式(文字、图画、表格等)呈现整理数据的结果(参见例19)。3.通过对数据的简朴分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息(参见例 20)。四、综合与实践 1通过实践活动,获得初步的数学活动经验,感受数学在平常生活中的作用,
27、体验可以运用所学的知识和方法解决简朴问题。2.在实践活动中,明确要解决的问题和解决问题的办法。3.经历实践操作的过程,进一步理解所学的内容。(参见例 21,例 22,例 23)第二学段(4-6 年级)一、数与代数(一)数的结识 1.在具体情境中,结识万以上的数,了解十进制计数法,会用万、亿为单位表达大数。2.结合现实情境感受大数的意义,并能进行估计(参见例 24)。3.会运用数描述事物的某些特性,进一步体会数在平常生活中的作用(参见例 25)。4.知道 2,3,5 的倍数的特性,了解公倍数和最小公倍数;在 1-100 的自然数中,能找出 10 以内自然数的所有倍数,能找出 10 以内两个自然数
28、的公倍数和最小公倍数。5.了解公因数和最大公因数;在 1-100 的自然数中,能找出一个自然数的所有因数,能找出两个自然数的公因数和最大公因数。6.了解自然数、整数,奇数和偶数,质(素)数和合数。7.结合具体情境,理解小数和分数的意义,理解百分数的意义(参见例 26);会进行小数、分数和百分数的转化(不涉及将循环小数化为分数)。8.能比较小数的大小和分数的大小。9在熟悉的生活情境中,了解负数的意义,会用负数表达平常生活中的一些量。(二)数的运算 1能笔算三位数乘两位数的乘法,三位数除以两位数的除法。2 结识中括号,能进行简朴的整数四则混合运算(以两步为主,不超过三步)。3探索并了解运算律(加法
29、的互换律和结合律、乘法的互换律和结合律、乘法对加法的分派律),会应用运算律进行一些简便运算。4在具体运算和解决简朴实际问题的过程中,体会加与减、乘与除的互逆关系。5能分别进行简朴的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步)。6能解决小数、分数和百分数的简朴实际问题。7.在具体情境中,了解常见的数量关系:总价=单价数量、路程=速度时间,并能解决简朴的实际问题。8经历与别人交流各自算法的过程,并能表达自己的想法。9在解决问题的过程中,能选择合适的方法进行估算(参见例 27、例 28)。10能借助计算器进行运算,解决简朴的实际问题,探索简朴的规律(参见例 29)。
30、(三)式与方程 1在具体情境中会用字母表达数。2结合简朴的实际情境,了解等量关系,并能用字母表达。3.能用方程表达简朴情境中的等量关系(如 3x+25,2x-x3),了解方程的作用。4了解等式的性质,能用等式的性质解简朴的方程。(四)正比例、反比例 1在实际情境中理解比及按比例分派的含义,并能解决简朴的问题。2通过具体情境,结识成正比例的量和成反比例的量。3能根据给出的有正比例关系的数据在方格纸上画图,并根据其中一个量的值估计另一个量的值(参见例 30)。4能找出生活中成正比例和成反比例关系量的实例,并进行交流。(五)探索规律 探求给定情境中隐含的规律或变化趋势(参见例 31、例 32)。二、
31、图形与几何(一)图形的结识 1结合实例了解线段、射线和直线。2体会两点间所有连线中线段最短,知道两点间的距离。3知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。4结合生活情境了解平面上两条直线的平行和相交(涉及垂直)关系。5通过观测、操作,结识平行四边形、梯形和圆;知道扇形,会用圆规画圆。6结识三角形,通过观测、操作,了解三角形两边之和大于第三边、三角形内角和是 180。7结识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。8能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例33)。9通过观测、操作,结识长方体、正方体、圆柱和圆锥,结识长方体、正方体和圆
32、柱的展开图。(二)测量 1能用量角器量指定角的度数,能画指定度数的角,会用三角尺画 30,45,60,90角。2探索并掌握三角形、平行四边形和梯形的面积公式,并能解决简朴的实际问题。3知道面积单位:千米2、公顷。4通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式;探索并掌握圆的面积公式,并能解决简朴的实际问题。5会用方格纸估计不规则图形的面积(参见例 34)。6通过实例了解体积(涉及容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受 1 米3、1 厘米3以及 1 升、1 毫升的实际意义。7结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆
33、锥体积的计算方法,并能解决简朴的实际问题。8体验某些实物(如土豆等)体积的测量方法(参见例 35)。(三)图形的运动 1通过观测、操作等活动,进一步结识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简朴的轴对称图形。2通过观测、操作等,在方格纸上结识图形的平移与旋转,能在方格纸上按水平或垂直方向将简朴图形平移,能在方格纸上将简朴图形旋转 90(参见例 36)。3能运用方格纸按一定比例将简朴图形放大或缩小。4能从平移、旋转和轴对称的角度欣赏生活中的图案,并运用它们在方格纸上设计简朴的图案。(四)图形与位置 1了解比例尺;在具体情境中,会按给定的比例进行图上距离与实
34、际距离的换算。2能根据物体相对于参照点的方向和距离拟定其位置。3会描述简朴的路线图(参见例 37)。4在具体情境中,能在方格纸上用数对表达位置,知道数对(限于正整数)与方格纸上点的相应(参见例 38)。三、记录与概率(一)简朴数据记录过程 1经历简朴的收集、整理、描述和分析数据的过程(可使用计算器)。2会根据实际问题设计简朴的调查表,能选择适当的方法(如调查、实验、测量)收集数据。3结识条形记录图、扇形记录图、折线记录图;能选择条形记录图、折线记录图直观、有效地表达数据(参见例 39)。4 体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义(参见例 39)。5能从报刊杂志、电视等媒体
35、中,故意识地获得一些数据信息,并能读懂简朴的记录图表(参见例 40)。6能解释记录结果,根据结果作出简朴的判断和预测,并能进行交流(参见例 39 和例 41)。(二)随机现象发生的也许性 1结合具体情境,了解简朴的随机现象;能列出简朴的随机现象中所有也许发生的结果(参见例 42)。2通过实验、游戏等活动,感受随机现象结果发生的也许性是有大小的,能对一些简朴的随机现象发生的也许性大小作出定性描述,并和同学交流(参见例 42)。四、综合与实践 1.经历有目的、有设计、有环节、有合作的实践活动。2结合实际情境,体验发现和提出问题、分析和解决问题的过程。3在给定目的下,初步体验针对具体问题提出设计思绪
36、、制定简朴的方案解决问题的过程。4.通过应用和反思,加深对所用知识和方法的理解,了解所学知识之间的联系,积累数学活动经验。(参见例 43、例 44、例 45、例 46)第四部分 实行建议 一、教学建议 教学活动是师生积极参与、交往互动、共同发展的过程。数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也可以有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生积极地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。在数学教学活动中,教师要把
37、基本理念转化为自己的教学行为,解决好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;发明性地使用教材,积极开发、运用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实行有差异的教学,使每个学生都得到充足的发展;合理地运用现代信息技术,有条件的地区,要尽也许合理、有效地使用计算机和有关软件,提高教学效益。1数学教学活动要注重课程目的的整体实现 为使每个学生都受到良好的数学教育,数学教学不仅要使学生获得数学的知识技能,并且要把“知识技能”、“数学思考”、“问题解决”、“情感
38、态度”四个方面目的有机结合,整体实现课程目的。课程目的的整体实现需要日积月累。在平常的教学活动中,教师应努力挖掘教学内容中也许蕴涵的、与上述四个方面目的有关的教育价值,通过长期的教学过程,逐渐实现课程的整体目的。因此,无论是设计、实行课堂教学方案,还是组织各类教学活动,不仅要重视学生获得知识技能,并且要激发学生的学习爱好,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。例如,关于“零指数”教学方案的设计可作如下考虑:教学目的不仅要涉及了解零指数幂的“规定”、会进行简朴计算,还要涉及感受这
39、个“规定”的合理性,并在这个过程中学会数学思考、感悟理性精神(参见例 81)。2重视学生在学习活动中的主体地位 有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。(1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生应用知识并逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,才干在数学思考、问题解决和情感态度方面得到发展(参见例 82)。(2)教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展
40、提供良好的环境和条件。教师的“组织”作用重要体现在两个方面:第一,教师应当准确把握教学内容的数学实质和学生的实际情况,拟定合理的教学目的,设计一个好的教学方案。第二,在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动。教师的“引导”作用重要体现在:通过恰当的问题,或者准确、清楚、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性。
41、教师与学生的“合作”重要体现在:教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。(3)解决好学生主体地位和教师主导作用的关系。好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正贯彻,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生可以真正成为学习的主体,得到全面的发展(参见例 31、例 52)。实行启发式教学有助于贯彻学生的主体地位和发挥教师的主导作用。教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观测现象、提出猜想、推理论证等,都能有
42、效地启发学生的思考,使学生成为学习的主体,逐步学会学习。3注重学生对基础知识、基本技能的理解和掌握“知识技能”既是学生发展的基础性目的,又是贯彻“数学思考”、“问题解决”、“情感态度”目的的载体。(1)数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观测、分析,抽象概括,运用知识进行判断。教师还应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知
43、识之间的区别和联系等。数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,解决好局部知识与整体知识的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。(2)在基本技能的教学中,不仅要使学生掌握技能操作的程序和环节,还要使学生理解程序和环节的道理。例如,对于整数乘法计算,学生不仅要掌握如何进行计算,并且要知道相应的算理;对于尺规作图,学生不仅要知道作图的环节,并且要能知道实行这些环节的理由。基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的反复操作,要注重训练的实效性。教师应把
44、握技能形成的阶段性,根据内容的规定和学生的实际,分层次地贯彻。4引导学生积累数学活动经验、感悟数学思想 数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如归纳、演绎、抽象、转化、分类、模型、数形结合、随机等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步积累数学活动经验、感悟数学思想。(1)合理创设情境 教学中应当努力创设源于学生生活的现实情境。好的“现实情境”,应当是学生熟悉的、简明的、有助于引向数学实质的、真实或合理的。此外,教学中也可以根据具体内容创设其他类型的情境,涉及根据已有数学知识创设的情境、已有其他学科知识创设的情境。(2)
45、引导学生自主探索。数学知识的形成以及逐渐完善的过程中往往蕴涵着一定的数学思想。在教学活动中,教师应选择适当的形式和素材组织学生进行自主探索。探索活动的重点在于积累基本的数学活动经验,感悟基本的数学思想。活动中应注重激发学生好奇心,鼓励学生敢于质疑,引导学生从数学的角度发现问题和提出问题。有效地开展探索活动,一是要选择合适的问题,二是要整体设计、组织探索活动(参见例 83、例 84)。组织学生开展探索活动应当注意以下几点:鼓励学生在独立思考的基础上,与别人合作交流。没有每个学生的独立思考,合作交流就缺少基础;没有同伴间的合作交流,个人的思考有时难以进一步。两者的有效结合就能使探索活动更有深度、指
46、向数学的实质。课堂教学的时间是有限的,教师必须把握好学生自主探索活动的时间,给最终的归纳总结留有余地。教师需要在实践中不断提高自己组织、引导学生开展探索活动的能力,提高探索活动的实效。为学生自主探索提供适当的空间。既要关注学生获得的结果,更要关注学生探索的过程。解决好学生自主探索与教师示范的关系。对于学生的探索活动,教师不仅要给予启发、引导,并且应适时地进行归纳,示范阶段性结论,明晰进一步探索的思绪。合作交流的目的在于促进每一个学生的思考。对于进行自主探索有困难的学生,教师应给以具体的帮助、鼓励和指导,努力使他们也能参与探索活动并积极地思考。5关注学生情感态度的发展 根据课程目的,广大教师要把
47、贯彻情感态度的目的作为己任,努力把情感态度目的有机地融合在数学教学过程之中。设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:如何引导学生积极参与教学过程?如何组织学生探索,鼓励学生创新?如何引导学生感受数学的价值?如何使他们乐意学,喜欢学,对数学感爱好?如何让学生体验成功的喜悦,从而增强自信心?如何引导学生善于与同伴合作交流,既能理解、尊重别人的意见,又能独立思考、大胆质疑?如何让学生做自己能做的事,并对自己做的事情负责?如何帮助学生锻炼克服困难的意志?如何培养学生良好的学习习惯?在教育教学活动中,教师要尊重学生,以强烈的责任心,严谨的治学态度,健全的人格感染和影响学生;要不断提高自身
48、的数学素养,善于挖掘教学内容的教育价值;要在教学实践中善于用标准的理念分析各种现象,恰本地进行养成教育。例如,当学生知道自己课堂练习有误、可以改正却又不努力改正时,教师就应当对学生说:“你已经知道解题有错误,必须自己改正,相信你自己可以改正。”这里,“必须自己改正”就是规定学生“对自己做的事负责”,“相信你自己可以改正”则是给学生以鼓励,激发学生的自信心。又如,学生不能合适地回答教师的课堂提问时,教师不应随意地打断学生的回答,而应倾听学生的意见,也不要以自己预设的“标准”简朴地否认学生的意见,而应判断学生的解答是否具有合理的成分并加以恰当的引导。6.合理把握“综合与实践”的实行 “综合与实践”
49、的实行是以问题为载体、以学生自主参与为主的学习活动。它有别于学习具体知识的探索活动,更有别于课堂上教师的直接讲授。它是教师通过问题引领、学生全程参与、实践过程相对完整的学习活动。积累数学活动经验、培养学生应用意识和创新意识是数学课程的重要目的,应贯穿整个数学课程之中。“综合与实践”是实现这些目的的重要和有效的载体。“综合与实践”的教学,重在实践、重在综合。重在实践是指在活动中,注重学生自主参与、全过程参与,重视学生积极动脑、动手、动口。重在综合是指在活动中,注重数学与生活实际、数学与其他学科、数学内部知识的联系和综合应用。教师在教学设计和实行时应特别关注的几个环节是:问题的选择,问题的展开过程
50、,学生参与的方式,学生的合作交流,活动过程和结果的展示与评价等。要使学生能充足、自主地参与“综合与实践”活动,选择恰当的问题是关键。这些问题既可来自教材,也可以由教师、学生开发。提倡教师研制、开发、生成出更多适合本地学生特点的、有助于实现“综合与实践”课程目的的好问题。实行“综合与实践”时,教师要放手让学生参与,启发和引导学生进入角色,组织好学生之间的合作交流,并照顾到所有的学生。教师不仅要关注结果,更要关注过程,不要急于求成,要鼓励引导学生充足运用“综合与实践”的过程,积累活动经验、展现思考过程、交流收获体会、激发发明潜能。在实行过程中,教师要注意观测、积累、分析、反思,使“综合与实践”的实