资源描述
中央广播电视大学人才培养模式改革与开放教育试点
2023-2023年度第一学期
微积分初步
形成性考核册
姓名
学号
年级
专业
保定广播电视大学
微积分初步形成性考核作业(一)
————函数,极限和连续
一、填空题(每小题2分,共20分)
1.函数的定义域是 .
2.函数的定义域是 .
3.函数的定义域是 .
4.函数,则 .
5.函数,则 .
6.函数,则 .
7.函数的间断点是 .
8. .
9.若,则 .
10.若,则 .
二、单项选择题(每小题2分,共24分)
1.设函数,则该函数是( ).
A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数
2.设函数,则该函数是( ).
A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数
3.函数的图形是关于( )对称.
A. B.轴 C.轴 D.坐标原点
4.下列函数中为奇函数是( ).
A. B. C. D.
5.函数的定义域为( ).
A. B. C.且 D. 且
6.函数的定义域是( ).
A. B.
C. D.
7.设,则( )
A. B.
C. D.
8.下列各函数对中,( )中的两个函数相等.
A., B., C., D.,
9.当时,下列变量中为无穷小量的是( ).
A. B. C. D.
10.当( )时,函数,在处连续.
A.0 B.1 C. D.
11.当( )时,函数在处连续.
A.0 B.1 C. D.
12.函数的间断点是( )
A. B.
C. D.无间断点
三、解答题(每小题7分,共56分)
⒈计算极限.
2.计算极限
3.
4.计算极限
5.计算极限.
6.计算极限.
7.计算极限
8.计算极限.
微积分初步形成性考核作业(二)
————导数、微分及应用
一、填空题(每小题2分,共20分)
1.曲线在点的斜率是 .
2.曲线在点的切线方程是 .
3.曲线在点处的切线方程是 .
4. .
5.若y = x (x – 1)(x – 2)(x – 3),则(0) = .
6.已知,则= .
7.已知,则= .
8.若,则 .
9.函数的单调增长区间是 .
10.函数在区间内单调增长,则a应满足 .
二、单项选择题(每小题2分,共24分)
1.函数在区间是( )
A.单调增长 B.单调减少
C.先增后减 D.先减后增
2.满足方程的点一定是函数的( ).
A.极值点 B.最值点 C.驻点 D. 间断点
3.若,则=( ).
A. 2 B. 1 C. -1 D. -2
4.设,则( ).
A. B. C. D.
5..设是可微函数,则( ).
A. B.
C. D.
6.曲线在处切线的斜率是( ).
A. B. C. D.
7.若,则( ).
A. B.
C. D.
8.若,其中是常数,则( ).
A. B. C. D.
9.下列结论中( )不对的.
A.在处连续,则一定在处可微.
B.在处不连续,则一定在处不可导.
C.可导函数的极值点一定发生在其驻点上.
D.若在[a,b]内恒有,则在[a,b]内函数是单调下降的.
10.若函数f (x)在点x0处可导,则( )是错误的.
A.函数f (x)在点x0处有定义 B.,但
C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微
11.下列函数在指定区间上单调增长的是( ).
A.sinx B.e x C.x 2 D.3 - x
12.下列结论对的的有( ).
A.x0是f (x)的极值点,且(x0)存在,则必有(x0) = 0
B.x0是f (x)的极值点,则x0必是f (x)的驻点
C.若(x0) = 0,则x0必是f (x)的极值点
D.使不存在的点x0,一定是f (x)的极值点
三、解答题(每小题7分,共56分)
⒈设,求.
2.设,求.
3.设,求.
4.设,求.
5.设是由方程拟定的隐函数,求.
6.设是由方程拟定的隐函数,求.
7.设是由方程拟定的隐函数,求.
8.设,求.
微积分初步形成性考核作业(三)
———不定积分,极值应用问题
一、填空题(每小题2分,共20分)
1.若的一个原函数为,则 。
2.若的一个原函数为,则 。
3.若,则 .
4.若,则 .
5.若,则 .
6.若,则 .
7. .
8. .
9.若,则 .
10.若,则 .
二、单项选择题(每小题2分,共16分)
1.下列等式成立的是( ).
A. B.
C. D.
2.若,则( ).
A. B. C. D.
3.若,则( ).
A. B.
C. D.
4.以下计算对的的是( )
A. B.
C. D.
5.( )
A. B.
C. D.
6.=( ).
A. B. C. D.
7.假如等式,则( )
A. B. C. D.
三、计算题(每小题7分,共35分)
1.
2.
3.
4.
5.
四、极值应用题(每小题12分,共24分)
1.设矩形的周长为120厘米,以矩形的一边为轴旋转一周得一圆柱体。试求矩形的边长为多少时,才干使圆柱体的体积最大。
2.欲用围墙围成面积为216平方米的一成矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大尺寸,才干使所用建筑材料最省?
五、证明题(本题5分)
函数在(是单调增长的.
微积分初步形成性考核作业(四)
———定积分及应用、微分方程
一、填空题(每小题2分,共20分)
1.
2.
3.已知曲线在任意点处切线的斜率为,且曲线过,则该曲线的方程是 。
4.若 .
5.由定积分的几何意义知,= 。
6. .
7.= .
8.微分方程的特解为 .
9.微分方程的通解为 .
10.微分方程的阶数为 .
二、单项选择题(每小题2分,共20分)
1.在切线斜率为2x的积分曲线族中,通过点(1, 4)的曲线为( ).
A.y = x2 + 3 B.y = x2 + 4
C. D.
2.若= 2,则k =( ).
A.1 B.-1 C.0 D.
3.下列定积分中积分值为0的是( ).
A. B.
C. D.
4.设是连续的奇函数,则定积分( )
A. B. C. D. 0
5.( ).
A.0 B. C. D.
6.下列无穷积分收敛的是( ).
A. B.
C. D.
7.下列无穷积分收敛的是( ).
A. B.
C. D.
8.下列微分方程中,( )是线性微分方程.
A. B.
C. D.
9.微分方程的通解为( ).
A. B. C. D.
10.下列微分方程中为可分离变量方程的是( )
A. ; B. ;
C. ; D.
三、计算题(每小题7分,共56分)
1.
2.
3.
4.
5.
6.求微分方程满足初始条件的特解.
7.求微分方程的通解。
四、证明题(本题4分)
证明等式。
展开阅读全文