资源描述
地铁BAS——抑制谐波方案
4.谐波干扰
4.1有关谐波干扰的问题
BAS系统设备是否对电网有谐波干扰?如何解决?
4.2有关谐波干扰问题的答复
地铁BAS系统对电网有谐波干扰,解决方案如下论述:
4.2.1谐波的产生
电网谐波来自于3个方面:一是发电源质量不高产生谐波;二是输配电系统产生谐波;三是用电设备产生的谐波。其中用电设备产生的谐波最多。
发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流的0.5%。
在用电设备中,下面一些设备都能产生谐波。
晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
4.2.2谐波的危害
电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。
电力系统中谐波的危害是多方面的,概括起来有以下几个方面:
1. 对供配电线路的危害
影响线路的稳定运行
供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。
影响电网的质量
电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2. 对电力设备的危害
对电力电容器的危害
当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。
对电力变压器的危害
谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时由于以上两方面的损耗增加,因此要减少变压器的实际使用容量,或者说在选择变压器额定容量时需要考虑留出电网中的谐波含量。除此之外,谐波还导致变压器噪声增大,变压器的振动噪声主要是由于铁心的磁致伸缩引起的,随着谐波次数的增加,振动频率在1KHZ左右的成分使混杂噪声增加,有时还发出金属声。
对电力电缆的危害
由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。另外,电缆的电阻、系统母线侧及线路感抗与系统串联,提高功率因数用的电容器及线路的容抗与系统并联,在一定数值的电感与电容下可能发生谐振。
3.对用电设备的危害
对电动机的危害
谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重时使电动机过热。尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力。另外电动机中的谐波电流,当频率接近某零件的固有频率时还会使电动机产生机械振动,发出很大的噪声。
对低压开关设备的危害
对于配电用断路器来说,全电磁型的断路器易受谐波电流的影响使铁耗增大而发热,同时由于对电磁铁的影响与涡流影响使脱扣困难,且谐波次数越高影响越大;热磁型的断路器,由于导体的集肤次应与铁耗增加而引起发热,使得额定电流降低与脱扣电流降低;电子型的断路器,谐波也要使其额定电流降低,尤其是检测峰值的电子断路器,额定电流降低得更多。由此可知,上述三种配电断路器都可能因谐波产生误动作。
对于漏电断路器来说,由于谐波汇漏电流的作用,可能使断路器异常发热,出现误动作或不动作。对于电磁接角器来说,谐波电流使磁体部件温升增大,影响接点,线圈温度升高使额定电流降低。对于热继电器来说,因受谐波电流的影响也要使额定电流降低。在工作中它们都有可能造成误动作。
对弱电系统设备的干扰
对于计算机网络、通信、有线电视、报警与楼宇自动化等弱电设备,电力系统中的谐波通过电磁感应、静电感应与传导方式耦合到这些系统中,产生干扰。其中电感应与静电感应的耦合强度与干扰频率成正比,传导则通过公共接地耦合,有大量不平衡电流流入接地极,从而干扰弱电系统。
影响电力测量的准确性
目前采用的电力测量仪表中有磁电型和感应型,它们受谐波的影响较大。特别是电能表(多采用感应型),当谐波较大时将产生计量混乱,测量不准确。
谐波对人体有影响
从人体生理学来说,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转,其频率如果与谐波频率相接近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。
4.2.3抑制谐波的解决方案
针对地铁BAS系统,最严重的谐波源就是变频器,其产生和危害性在4.2.1和4.2.2中已经作了详细的介绍,下面以变频器为例重点论述应对措施。
一.如何正确处理变频器与周边设备的关系
1. 变频器本身对外界的无线电干扰通过以下措施减轻
如图4-1所示,在变频器的输入、输出侧加装FIL1和FIL2无线电干扰抑制电抗器。这一类电抗器属于共模抑制电抗器,或称零序电抗器,它对被穿过磁芯的几根导线上出现的瞬时相位和幅值不能抵消的干扰有抑制作用,而对被穿过磁芯的几根导线瞬时相加电磁场可完全抵消的干扰就不能抑制,也即对三相正弦波电流不起作用。就无线干扰而言,共模干扰占大多数,所以共模抑制电抗器经常对无线电干扰抑制有效。
图4-1 为降低无线电干扰在输出和输入功率线上
加装FIL1和FIL2磁环形成电抗器对共模干扰进行抑制
变频器的输入、输出功率电线的布局要防止对周边设备的控制线有电磁场耦合,即要防止这些功率电线与某条控制线平行捆扎在一起或过分靠近,如图4-2所示。
图4-2 变频器的控制线与功率输出线及电源
进线过分靠近或捆绑在一起的不良安装
数字式测量仪器仪表的输入阻抗高、频率响应好,很容易敏感变频器本体和输入输出线所发射出来的无线电干扰,造成数字式测量仪器仪表显示乱跳或完全不能测量。因此要求数字式测量仪器仪表远离变频器及变频器的输入输出线。如远离不可能,应对数字式仪器仪表的本体、测量线进行屏蔽。屏蔽线的外套金属网不能两端接地,只能一端接地,接地端设在数字式仪器仪表侧,由此形成静电屏蔽如图4-3所示,另外一种使用双绞线作为数字式仪器仪表的输入线,每绞间距不得大于1cm。干扰严重时可以综合采用多种措施:双绞线+屏蔽套、屏蔽箱、拉开距离、变频器输入输出线加磁环、加电抗器等。
图4-3 对数字式仪器或其他敏感仪器的抗干扰处理方法
2.外界干扰妨碍变频器正常运行时的对策
由电网引入的干扰和过电压
(a)变压器原边电网因各类用电器切换、雷电等所引起的过电压及干扰会通过变压器分布电容和绕阻耦合传递到变压器付边、使付边电线上出现过电压及干扰。
(b) 与变频器同一付边电源线上有大功率的负载切换,特别是功率因数补偿柜之类的容性负载切换,会在电源线上引起过电压,这种过电压的大小与切换电流的大小、突变速率和电网导线电感值有关。例如:如图4-4所示的负载N经由断路器KM2突然断开时,因电网导线电感(La、Lb、Lc)的存在,会在接往变频器的导线上产生过电压或干扰
图4-4 过电压和干扰传输途径及为减弱过电压和干扰所附加的各种措施及元件
(c) 在变频器同一电源上接有强干扰负载或晶闸管器件,会造成电网电流严重畸变,引起在正弦波电压上叠加尖峰过电压和干扰。
由周边电器的无线电干扰引起变频器不能正常工作。变频器本身如果是全金属外壳就有良好的屏蔽辐射干扰的作用,如果是塑料外壳,变频器设计中又没有很好的抗干扰措施,此时就要另外采取措施;
减轻外界干扰的对策:
(a)在变频器电源输入端加交流电抗器1ACL、无线电吸收电抗器FIL1。
(b) 过电压的减弱程度与变频器前端电源线长度、布局等有关。当电源线长时,由变压器来的过电压和干扰在电源线的电感上会衰减,此时由变频器内部的压敏电阻、电容吸收比较有效。但当变频器与配电用变压器靠近时,电源线阻抗太小,过电压发生时没有在电源线上得到衰减,因此强大的过电压到达变频器压敏电阻上,甚至会使压敏电阻爆炸。为此加入进线侧交流电抗器ACL1实有必要。
(c) 对于变频器外控端子上因外界干扰造成不能正常工作时可采用如下对策:
u 使用继电器中继方式,使受干扰的线路完全隔离
u 如图4-5所示,在外控端上并电容,降低输入阻抗、使干扰衰减
u 在外控端子使用双绞线作控制(图4-5)
u 对塑料外壳变频器考虑装在屏蔽箱内,但必需有良好通风冷却配合
图4-5 减轻外控输入端上外来干扰的方法
3.变频器引起电网波形畸变,使部分设备工作不正常
通用变频器因都是采用整流桥→电容滤波→逆变方式、即交-直-交方式,整流和电容滤波的使用,会造成电网交流电压正弦波的顶端因电容吸收能量而变平,在电网内阻大的条件下,使电网电压波形畸变到足已使一部份电器工作不正常和发生保护动作。
例如:电扶梯、制冷机等,它们的电机都有对相位的要求,在设备中都使用了相序保护器,当电网波形畸变严重时,相序保护器因电压波形畸变而动作,使电机不能接通电源,因此,电梯和制冷机完全不能工作。
当线电压的波形顶端因变频器的整流和电容滤波使波形变成平顶波时,此时相电压波形恰变成尖顶波。一般整流式电压表都是测得峰值电压,再按正弦波比例折算成有效值而显示,波形的变坏使显示的“相电压有效值”偏高,“线电压有效值”偏低,这可以从图4-6的波形分析图上看出来。在这样的恶劣畸变下,不少用电器会因“电压过低”“电压过高”而报警,使现场某些设备不能工作。
图4-6 整流性电容滤波负载造成电网电压、电流波形的严重畸变
要解决这类因整流—电容滤波负载造成的电网波形畸变,有效方法是:
a在配电变压器(或发电机)后面的整流—电容滤波型变频器的总负载容量不要太大,一般小于配电变压器容量的1/10以下;
b变频器要配置直流电抗器和输入侧交流电抗器,而且选择电抗器的电感量大一些为好。直流电抗器电感量越大,电流连续性越好,对功率因数改善越有利。图4-7是不同电感量的直流电抗器在变频器中使用的功率因数趋向。图中THD是谐波总畸变,cosΦ是输入功率因数,使用大的直流电抗器可以大大降低谐波总畸变和提高功率因数。
图4-7 变频器在不同直流电抗器时的功率因数和总谐拨畸变
c有条件的情况下要使用有PFC(功率因数校正)技术的三相和单相变换器作为变频器的输入或者采用经过移相变压器绕阻的12脉整流技术,以改善畸变,但这都涉及到变频器内部整流滤波级的改型设计。
二.变频器安装后的调试注意事项
1.通电前检查
a察看变频器安装空间、通风情况、是否安全足够;铭牌是否同电机匹配;控制线是否布局合理,以避免干扰;进线与出线绝对不得接反,变频器的内部主回路负极端子N不得接到电网中线上(不少电工误认为N应接电网中线),各控制线接线应正确无误。
b当变频器与电机之间的导线长度超过约50m,当该导线布在铁管或蛇皮管内长度超过约30m,特别是一台变频器驱动多台电机等情况,存在变频器输出导线对地分布电容很大,应在变频器输出端子上先接交流电抗器,然后接到后面的导线上,最后是负载,以免过大的电容电流损坏逆变模块。在输出侧导线长的时候,还要将PWM的调制载频设置在低频率,以减少输出功率管的发热,以便降低损坏的概率。
c确认变频器工作状态与工频工作状态的互相切换要有接触器的互锁,不能造成短路,并且两种使用状态时电机转向相同。
d根据变频器容量等因素确认输入侧交流电抗器和滤波直流电抗器是否接入。一般对22kW以上要接直流电抗器,对45kW以上还要接交流电抗器。
e电网供电不应有缺相,测定电网交流电压和电流值、控制电压值等是否在规定值,测量绝缘电阻应符合要求(注意因电源进线端压敏电阻的保护,用高电压兆欧计时要分辩是否压敏电阻已动作)。
2.通电和设定
a通电
通电后首先观察显示器,并按产品使用手册变更显示内容,检查有否异常。听看风机运转否,有的变频器使用温控风机,一开机不一定转,等机内温度升高后风机才转。检查进线和出线电压,听电机运转声音是否正常,检查电机转向反了没有,反了首先要更换电机线校正。
b设定
设定前先读懂产品使用手册,电机能脱离负载的先脱离负载。变频器在出厂时设定的功能不一定刚好符合实际使用要求,因此需进行符合现场所需功能的设定,一般设定内容有:频率、操作方法、最高频率、额定电压、加/减速时间、电子热过载继电器、转矩限制、电机极数等等。对矢量控制的变频器,要按手册设定或自动检测。并在检查设定完毕后进行验证和储存。
3.试运行
空载运行
将电机所带的负载脱离或减轻,作以下空载运行检查:
a检查电机转向;
b各频率点有否异常振动、共振、声音不正常,如有共振应设法使变频器频率设定点避开该点;
c 按设定的程序从头到尾试一遍确认没有问题;
d模拟日常会发生的操作,将各种可能操作做一遍确认无误;
e 听电机因调制频率产生的振动噪声是否在允许范围内,如不合适可更改调制频率,频率选高了振动噪音减小,但变频器温升增加,电机输出力矩有所下降,可能的话,调制频率低一些为好;
f测量输出电压和电流对称程度,对电机而言不得有10%以上不平衡。
负载试运行
a按正常负载运行,用钳型电流表测各相输出电流是否在预定值之内(观察变频器自显示电流也可,两者略有差别)。
b对有转速反馈的闭环系统要测量转速反馈是否有效。做一下人为断开和接入转速反馈,看一看对电机电压电流转速的影响程度。
c检查电机旋转平稳性,加负载运行到稳定温升(一般3h以上)时,电机和变频器的温度有否太高,如有太高应调整,调整可从改变以下参数着手:负载、频率、V/f曲线、外部通风冷却、变频器调制频率等。
d试验电动机的升降速时间有否过快过慢,不适合应重新设置。
e试验各类保护显示的有效性,在允许范围内尽量多做一些非破坏性的各种保护的确认。
f按现场工艺要求试运行一周,随时监控,并做好记录作为今后工况数据对照。
4.2.4谐波抑制的工程设计方法
随着大功率半导体电力变流器、变频器等电力电子设备的广泛应用,愈来愈多的谐波电流被注入了电网,由于电力电子器件的非线性工作特性决定了基波电流滞后,且谐波的消极影响越来越严重,因此,如何有效地抑制谐波是电力设计中的一项重要内容。
一.对谐波进行分析
(1)增加了无功功率消耗和铜损
在电流波形畸变的情况下,电力系统的视在功率应为:
S2=P2+Q2+T2 (1)
式中:S为视在功率;
P为有功功率;
Q为无功功率;
T为畸变功率。
由于谐波电压和电流的频率不同,其相角差随频率差作周期性变化,累计的功率之和为零,所以畸变功率具有无功功率性质。
谐波电流将使电力系统中的元件如电动机产生谐波铜耗、谐波杂散损耗及谐波铁耗。谐波损耗的存在使得电动机总损耗增加,温升增加及效率降低。电动机将多吸收无功功率,导致功率因数下降。
(2)含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波阻抗很小,谐波电流加在电容器的基波上,使电容器的总运行电流增大,温升提高,很容易发生过负荷以至损坏,导致使用寿命缩短。同时,谐波对电容器参数匹配产生影响,有可能在电网中造成高次谐波谐振,使故障加剧。
(3)由于谐波引起控制系统误差造成触发角偏移及电流、电压变化率过高,引起晶闸管故障,甚至引起变流装置、自动控制装置的控制失灵和误动作,进而造成系统故障。
(4)持续的谐波含量过高,将加速变压器、电动机、电力电缆的绝缘老化而使其容易被击穿。某些情况下,特别在瞬态过程中,还可能引起谐振过电压。
(5)谐波电压和谐波电流通过线路间的感应耦合,会在通讯线路中感应出相当大的谐波电压,从而对通讯线路造成干扰,影响通信网络的正常工作。
二.谐波抑制的工程设计要点
根据GB/T1454993《电能质量公用电网谐波》的要求,必须对各种非线性负荷注入电网的谐波电压和谐波电流加以限制。
在供电设计中,加大系统短路容量;提高供电电压等级;增加变流装置的脉动数;改善系统的运行方式,如:尽可能保持三相负荷平衡,避免各类电磁系统饱和,错开系统谐振点,由专门电路为谐波源负载供电等,都能减小系统中的谐波成份。但其中许多措施都会大大增加系统和设备的投资,且有些方法的效果并不一定很理想。因此,设置交流滤波器是有效抑制谐波和改善波形的积极措施,同时滤波器还能向系统提供所需的部分或全部无功。
整流器、逆变器等非线性负荷,因为其本身可以表示为产生高次谐波电流的恒流源,故可用图1来表示高次谐波的等效电路。
流向电网的谐波电流IS和母线的谐波电压VB可表示为:
IS=InZL/(ZS+ZL)
VB=ISZS (2)
式中:IS为注入电网的谐波电流;
In为谐波电流;
VB为谐波电压;
ZS为电网阻抗;
ZL为电网负载阻抗。
该式表明,当电网阻抗(ZS)一定时,相对减小系统负载阻抗(ZL),就可以减小流向电网的谐波电流和母线的谐波电压(电压畸变)。谐波干扰取决于流向电网的谐波电流或电压畸变的大小。抑制谐波的目的,就是要降低流向电网的谐波电流。
因此,可以采取以下两种措施:
(1)对于电力系统,设置谐波低阻抗的分流电路,从而减小负载阻抗ZL,降低注入电网的谐波电流IS;
(2)提供逆相位的谐波,以抵消非线性负荷所产生的谐波电流In,达到消除谐波的目的。
前者称为被动式滤波器,即常用的LC滤波器;后者称为能动式滤波器,即有源滤波器。
三.LC滤波器的设计
LC滤波器是利用LC谐振原理,人为地造成一条串联谐振支路,为欲滤除的主要谐波提供阻抗极低的通道,使之不注入电网。根据其电容器与电抗器的联接方式不同,主要常用的有单调谐滤波器和高通滤波器。它们的结构和阻抗特性如图2、图3所示。
单调谐滤波器的谐振次数和品质因数分别为:
谐波阻抗为:
Zfn=Rfn+j(nXL1-XC1/n)≈Rfn(1+j2δQn) (4)
上二式中:XC1为电容器组的基波容抗;
XL1为电抗器的基波感抗;
XLn为电抗器在n次谐波时的感抗;
Rfn为滤波器在n次谐波时的电阻;
δ为电网角频率相对偏差。
由于系统频率的波动、滤波电容器及电抗器有关参数制造时的偏差、电抗器的调节偏差,以及环境温度和负荷的变化,滤波器的实际谐振频率可能与其设计值不完全相同,即在偏离设计值的一定范围内变化。一般情况下,单调谐滤波器在Qn=1/2δ时有最好的滤波效果,即注入电网的谐波电流最小。
由图2(b)可知,单调谐滤波器的滤波效果与δ和Qn有直接关系。Qn越大,曲线越尖锐,但越容易失谐,滤波效果下降越快;Qn过小时,滤波效果在较大范围内变化不大,但效果较低,此时损耗也较大。所以,Qn和δ的确定要经过多种方案比较,并兼顾各个指标后选取。
对于高通滤波器,由于其电抗器L与电阻R并联,有一个较低的阻抗频率范围。当频率低于某一截止频率f0(f0=1/2πRC)时,由于容抗增加使滤波器阻抗明显增加,低次谐波电流难于通过;当频率高于f0时,由于容抗不大,总的阻抗也变化不大,形成一个通频带。
与单调谐滤波器相反,其品质因数Qn=Rfn/XLn。这是因为在高通滤波器中,电阻R与电抗器L并联,电阻越大,调谐越尖锐;而在单调谐滤波器中,电阻R与电抗器L串联,电阻越小,调谐越尖锐。但无论是单调谐滤波器还是高通滤波器,品质因数是标志调谐锐度的指标。对于高通滤波器,Qn值一般取1~5。由图3(b)可以看出,即使在调谐频率附近,频率偏差也影响不大。
高通滤波器截止频率应选择靠近要滤的主要谐波,否则其损耗将大大增加。
对于某次谐波,要达到同样的滤波效果,采用单调谐滤波器将大大减小容量,但高通滤波器有综合滤波功能,它可以同时滤除若干次高次谐波,减少滤波电路数。因此,在滤波方案选择时,对于主要的谐波,宜用单调谐滤波器;而对若干较高次谐波,且谐波电流值不大,宜选用一组高通滤波器。当结合所需无功补偿容量考虑时,许多情况下,用几组单调谐滤波器加一组高通滤波器是比较经济可行的方案。
如图4为某镀锡薄板厂用LC滤波器的典型构成。
由式(2)可知,LC滤波器的滤波效果取决于电源阻抗和滤波器内部阻抗的相互关系,由于滤波器并联在电路中,其本身就是阻抗因素,容易受电源已有高次谐波畸变的影响。因此,在设计时应充分考虑以下几方面因素:
(1)电源的阻抗条件。根据系统接线,变压器参数或拟装设滤波器处母线电压及短路容量,计算系统的谐波阻抗;电网频率波动范围和滤波电容器及电抗器的调节偏差等因素构成的等值频率偏差;
(2)在工频范围内,滤波器和电容器有着相同的功能,协调系统的超前相位容量,从而有效减小滤波器容量,降低滤波器造价;电网已有高次谐波电压对滤波器可能造成的过载影响;变流器负载所产生的高次谐波量,确定滤波器的定额;
(3)高次谐波抑制指标。根据《电能质量公用电网谐波》的规定,确定各次谐波电压畸变率和注入相应电压等级电网的谐波电流允许值。
LC滤波器结构简单,吸收谐波效果明显。但由于其结构原理上的原因,在应用中存在着难以克服的缺陷:
(1)仅对固有频率的谐波有较好的补偿效果,当谐波成份变化时补偿效果差;
(2)补偿特性受电网阻抗的影响很大;
(3)在特定频率下,电网阻抗和LC滤波器之间可能会发生并联谐振,使该频率的谐波电流被放大;或者发生串联谐振,使电网侧可能存在的谐波电压向LC滤波器注入较大的谐波电流;
(4)当接在电网中的其他谐波源未采取滤波措施时,其谐波电流可能流入该滤波器,造成过载。
而有源滤波器能对变化的谐波进行迅速的跟踪补偿,基本上克服了LC滤波器的上述缺点。
四.有源滤波器的应用
随着功率电子器件和PWM技术的发展,基于瞬时无功功率理论的谐波电流瞬时检测法的提出,使有源滤波器得到迅速发展。
前述可知,LC滤波器实际上是由滤波电容器和电抗器组成的、对某些或某次谐波呈低阻抗谐振支路,滤除这些谐波。而有源滤波器与LC滤波器的最大区别在于它是一种向系统注入补偿谐波电流,以抵消非线性负荷所产生的谐波电流的能动式滤波装置。它能对变化的谐波进行迅速的动态跟踪补偿,且补偿特性不受系统阻抗影响。其结构上由静态功率变流器构成,具有半导体功率器件的高可控性和快速响应能力。
有源滤波器的工作原理如图5所示。
负载电流IL按傅里叶级数可展开为:
IL=ΣInsin(nωt+θn)
=I1cosθ1sinωt+I1sinθ1cosωt+ΣInsin(nωt+θn)
=I1p+I1q+In (5)
式中:I1p为负载基波有功电流;
I1q为负载基波无功电流;
In为高次谐波电流。
将滤波器并联连接在谐波发生源和电源之间,Is=IL+IF。控制有源滤波器的输出电流IF=-In,电源侧电流则为只含基波分量的正弦波形。即:有源滤波器产生一个与负载谐波电流幅值相等、相位相反的电流注入负载电流IL流经的线路中,将负载谐波抵消,使之不流入电网。由式(5)可知,有源滤波器还可同时补偿无功,即使IF=-I1q-In,IS=-I1p,从而提高系统功率因数。
有源滤波器的基本结构由谐波电流检测、控制电路、PWM逆变器、直流电源及注入变压器等部分组成。根据逆变器储能元件不同,可将有源滤波器分为电流型和电压型两种。电流型有源滤波器储能元件为电感,由于其运行损耗较大,对储能电感的充电控制较复杂,因而使其应用受到限制;电压型有源滤波器储能元件为电容,具有损耗小,易于控制等优点而得到普遍应用。电压型有源滤波器工作过程是由电容器构成储能直流电源,逆变器根据检测信号产生PWM输出电压,将储存在电容器中直流电能转变成所需频率和波形的补偿电流,经隔离变压器注入线路中。PWM逆变器同时兼有向电抗器或电容器提供直流电能的功能。这个过程直接受谐波电流补偿量检测及控制电路的控制。
有源滤波器具有以下特点:
(1)该装置是一个谐波电流源,它的接入对系统阻抗不会产生影响;
(2)系统结构发生变化时,该装置不存在产生谐振的危险,不影响补偿性能;
(3)不存在过载问题。当系统谐波电流增大超过装置的补偿能力时,滤波器仍可发挥最大补偿作用;
(4)对系统中各次谐波均能有效抑制;
(5)一台装置即可实现对多次谐波和基波无功电流的实时动态跟踪补偿。
但是,与LC滤波器相比,有源滤波器的结构相对复杂,运行损耗较大,设备造价高。由于有源滤波器本身是以开关方式工作,在补偿谐波的同时,也会注入新的谐波,但其开关频率很高(达3kHz以上),谐波频率高,幅值低。
有源滤波器可用于抑制负载为周期性变化的高次谐波和LC滤波器不能抑制的部分高次谐波。表1为有源滤波器的两种接线方式比较。
直接接入方式是有源滤波器与系统的基本连接方式。此时PWM逆变器相当于一个受控电流源,其产生与负载谐波大小相等、相位相反的谐波电流,使电源侧电流被补偿成正弦。该方式下,电源基波电压全部加在逆变器上,因而装置容量较大。该接线方式的滤波器具有连续调节无功功率的功能,能在补偿谐波的同时动态补偿系统无功。
注入电路方式的有源滤波器将电抗器和电容器作为逆变器注入电路,利用电感和电容的谐振特性,使有源滤波器不承受基波电压,从而减小了逆变器的装置容量,减小体积,降低成本。通过选择注入电路常数,使逆变器的装置容量仅为直接接入方式的1/4~1/5,因此适于构成高压电路的大型滤波装置。
有源滤波器也可与LC滤波器并联或串联组成混合结构进行组合运用。当并联使用时,LC滤波器用来分担补偿相同次数的谐波,补充有源滤波器的补偿作用,降低所需逆变器的容量。而采用串联方式运用时,有源滤波器则主要不是用来直接补偿谐波,而是用来抑制LC滤波器与电网阻抗之间的并联谐振,即所谓的谐波放大现象,以改善LC滤波器的补偿效果。此时,逆变器不承受基波电压,装置容量小。
图6为明电舍株式会社生产的有源滤波器原理电路图。该装置可以有效滤除2~19次谐波,谐波抑制率达85%以上,动态响应时间小于1ms。
5.工业通讯网络及工业现场总线
5.1有关工业通讯网络及工业现场总线的问题
根据地铁车站的环境条件,提出车站BAS工业通讯网络和工业现场总线采用何种通讯介质(双绞/同轴电缆或光纤)。不同介质的最远传输距离、站间传输距离及工业通讯网络和工业现场总线的传输速率。
5.2有关工业通讯网络及工业现场总线问题的答复
5.2.1总线问题综述
根据地铁车站实际环境条件,通讯介质选用双绞线/同轴电缆或光纤均成可能。当然,如果不考虑工程成本,当然选择光纤介质通讯是最可靠最安全的。如果通讯距离不是很远,也没有很强的干扰因素,可采用双绞线/同轴电缆,部分距离超出范围,而且处于容易干扰的环境时,可改用光纤连接,这样既经济又能保证通讯品质,也是很好的选择方案。
至于传输距离和通讯速率不能以介质来衡量。如果使用同种通讯协议的条件下,光纤介质通讯距离和通讯速率远远优于双绞线/同轴电缆,具体通讯距离和通讯速率应该由通讯协议本身决定。下面介绍一下现场总线通讯协议及各协议采用不同的传输介质的性能比较。
5.2.2总线种类及执行标准
现场总线是用于过程控制现场仪表与控制室之间的一个标准的、开放的、双向的多站数字通信系统。随着计算机技术、通讯技术、集成电路技术的发展,以全数字式现场总线(FIELDBUS)为代表的互联规范,正在迅猛发展和扩大。由于采用现场总线将使控制系统结构简单,系统安装费用减少并且易于维护;用户可以自由选择不同厂商、不同品牌的现场设备达到最佳的系统集成等一系列的优点。近十几年由于现场总线的国际标准不能建立,现场总线发展的种类较多,约有40余种:如德国西门子公司Siemens的ProfiBus,法国的FIP,英国的ERA,挪威的FINT,Echelon公司的LONWorks,PhenixContact公司的InterBus,RoberBosch公司的CAN,Rosemounr公司的HART,CarloGarazzi公司的Dupline,丹麦ProcessData公司的P-net,PeterHans公司的F-Mux,以及ASI(ActraturSensorInterface),MODBus,SDS,Arcnet,国际标准组织-基金会现场总线FF:FieldBusFoundation,WorldFIP,BitBus,美国的DeviceNet与ControlNet等等。各种总线符合的标准如下:
丹麦国家标准DSF21906:P-Net
德国国家标准DIN19245(1-2):ProfiBus-FMS
德国国家标准DIN19245(3):ProfiBus-DP
德国国家标准DIN19245(4):ProfiBus-PA
法国国家标准FIPC46601-607:WorldFIP
日本JEMA标准CC-Link
美国国家标准ANSI/NEMA以等同方式支持的ISA/IEC标准草案
1)ISA/IEC61158-1总论;
2)ISA/IEC61158-2物理层规范
3)ISA/IEC61158-3链路层服务定义1998/09/30未通过
4)ISA/IEC61158-4链路层规范;1998/09/30未通过
5)ISA/IEC61158-5应用层服务定义;1998/09/30未通过
6)ISA/IEC61158-6应用层规范;1998/09/30未通过
7)ISA/IEC61158-7管理系统
8)ISA/IEC61158-8一致性试验
9)ISA/IEC61804过程控制模块欧洲标准EN50170(CLC65CX)
Vol.IP-Net
Vol.IIProfiBus
Vol.IIIWorldFIP
Vol.IVFF,联合国(UK)IEC国家委员会提议
Vol.VControlNet,联合国(UK)IEC国家委员会提议
欧洲标准EN50254(CLC65CX)
1)ProfiBusDP
2)FIPDWF
3)Interbus
欧洲标准EN50295(CLCTC17B)
1)ASI
欧洲标准prEN50325
1)DeviceNet美国Rockwell
2)SDS美国Honeywell
国际标准ISO11898
1)德国CANbus;
2)美国DeviceNet;
3)特性接近ProfiBus;
国际标准IEC62026(IECSC65C)
1)ASI法国、德国
2)DeviceNet美国Rockwell
3)SDS美国Honeywell
5.2.3总线举例
总线的种类很多,下面只对基金会现场总线FF;ProfiBus;WorldFIP;ControlNet/DeviveNet;CAN;CC-Link进行介
展开阅读全文