收藏 分销(赏)

概率论与数理统计练习题集及答案.doc

上传人:丰**** 文档编号:3109775 上传时间:2024-06-18 格式:DOC 页数:18 大小:981.50KB
下载 相关 举报
概率论与数理统计练习题集及答案.doc_第1页
第1页 / 共18页
概率论与数理统计练习题集及答案.doc_第2页
第2页 / 共18页
概率论与数理统计练习题集及答案.doc_第3页
第3页 / 共18页
概率论与数理统计练习题集及答案.doc_第4页
第4页 / 共18页
概率论与数理统计练习题集及答案.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、概率论与数理统计练习题集及答案一、选择题: 1某人射击三次,以表示事件“第次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( )(A) (B)(C) (D)2掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( )(A) (B) (C) (D)3设随机事件与互不相容,且,则( )(A) (B) (C) (D)4随机变量的概率密度为,则( )(A) (B)1 (C)2 (D)5下列各函数中可以作为某随机变量的分布函数的是( )(A) (B)(C) (D)6已知随机变量的概率密度为,令,则的概率密度为( )(A) (B) (C) (D)7已知二维随机向量的分布及边缘分布如表,且与相互独立

2、,则( )(A) (B) (C) (D)8设随机变量,随机变量,且与相互独立,则( )(A)3 (B)6 (C)10 (D)129设与为任意二个随机变量,方差均存在且为正,若,则下列结论不正确的是( )(A)与相互独立 (B)与不相关 (C) (D)答案:1. B 2. A 3.D 4.A 5.B 6. D 7. D 8. C 9. A1某人射击三次,以表示事件“第次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C )(A) (B)(C) (D)2将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为( A )(A) (B) (C) (D)3设随机事件与互不相容,且,则(

3、D )(A) (B) (C) (D)4随机变量的概率密度为,则( A )(A) (B)1 (C) (D)5随机变量的分布函数,则( B )(A)0 (B)1 (C)2 (D)36已知随机变量的概率密度为,令,则的概率密度为( D )(A) (B) (C) (D)7已知二维随机向量的分布及边缘分布如表,且与相互独立,则( B )(A) (B) (C) (D)8设随机变量相互独立,且,服从参数为9的泊松分布,则( C )(A)-14 (B)13 (C)40 (D)419设为二维随机向量,则与不相关的充分必要条件是( D )(A)与相互独立 (B) (C) (D)一、填空题1.设,是两个随机事件,若

4、与互不相容,则= ;若与相互独立,则= .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球(不放回).已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量的概率分布为,则常数 .4.设随机变量的分布函数为则常数 ,= .5.设随机变量的概率分布为-1 0 10.3 0.5 0.2则= .6.如果随机变量服从上的均匀分布,且,则= ,= .7.设随机变量,相互独立,且都服从参数为的分布,则= .8.设,是两个随机变量, ,则 = .答案:1. , 2. 3. 4., 5. 6. 1,5 7. 0.52 8. 211.设,是两个随机事件,则= .2.

5、甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为0.8,0.7,0.6,则密码能译出的概率为 .3.设随机变量的概率分布为则= .4.设随机变量的分布函数为,则 .5.设随机变量服从上的均匀分布,则的数学期望为 . 6.设随机变量相互独立,其概率分布分别为1 21 2 则= . 7.设,是两个随机变量,与相互独立,则 .8.设随机变量相互独立,且都服从0,1上的均匀分布,则 . 9.设随机变量和的相关系数为,则 = .答案:1. 0.7 2. 0.976 3. 4. 0.5 5. 6. 7. 8. 9. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3

6、个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.(1)求取到的是白球的概率;(2)若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件表示该球取自第个箱子,事件表示取到白球. 三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是. 在一天中,若三部机器均无故障,则该厂可获取利润万元;若只有一部机器发生故障,则该厂仍可获取利润万元;若有两部或三部机器发生故障,则该厂就要亏损万元. 求该厂一天可获取的平均利润.设随机变量表示该厂一天所获的利润(万元),则可能取,且,. 所以(万元) 四、设随机向量的密度函数为. 求;求的边缘密度,

7、并判断与的独立性.解:(1) ; (2) 由知随机变量相互独立. 五、设随机变量的密度函数为,求随机变量的密度函数.解法一:的分布函数为, 两边对求导,得 解法二:因为是上单调连续函数,所以注:为的反函数。二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为. 已知甲、乙、丙三人生产的零件的次品率分别为. 现从三人生产的零件中任取一个. 求该零件是次品的概率;若已知该零件为次品,求它是由甲生产的概率.解:设事件分别表示取到的零件由甲、乙、丙生产,事件表示取到的零件是次品.(1) ; (2) . 三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用表示取到的两个

8、球的最大编号. 求随机变量的概率分布;求.解:可能取,且所以的概率分布表为 且. 四、设随机向量的密度函数为. 求;求的边缘密度,并判断与的独立性.解:(1) ; (2) 由知随机变量相互独立. 五、设随机变量服从区间上的均匀分布,求随机变量的密度函数.解法一:由题意知. 的分布函数为, 两边对求导,得 解法二:因为是上单调连续函数,所以注:为的反函数。三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.05,一个次品被误判为合格品的概率是0.04求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率解:设“确实为

9、合格品”,“确实为次品”, “判为合格品”(1) (2) 四、设二维连续型随机向量的概率密度为,求:(1)边缘密度函数和;(2)判断与是否相互独立,并说明理由;(3)解:(1) (2) 与不独立 (3) 四、设二维连续型随机向量的概率密度为,求:(1)边缘密度函数和;(2)判断与是否相互独立,并说明理由;(3)解:(1) (2) 与独立 (3) 一、单项选择题1. 对任何二事件A和B,有( C ). A. B. C. D. 2. 设A、B是两个随机事件,若当B发生时A必发生,则一定有( B ). A. B. C. D. 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为,则目标被击中的概

10、率为( C )(甲乙至少有一个击中)A. B. C. D. 4. 设随机变量X的概率分布为X1234P1/6a1/4b 则a,b可以是( D )(归一性). A. B. C. D. 5. 设函数 是某连续型随机变量X的概率密度,则区间可以是( B )(归一性). A. B. C. D. 6. 设二维随机变量的分布律为Y X0 1 2012 0.1 0.2 0 0.3 0.1 0.1 0.1 0 0.1则( D ). A. 0.1 B. 0.3 C. 0.5 D. 0.77. 设随机变量X服从二项分布,则有( D )(期望和方差的性质).A. B. C. D. 8已知随机变量,且,则的值为( A

11、 ) A. B. C. D.9设随机变量,则下式中不成立的是( B )A. B. C. D. 10. 设X为随机变量,则的值为( A )(方差的计算公式). A5 B. C. 1 D. 311. 设随机变量X的密度函数为,且EX=0,则( A )(归一性和数学期望的定义). A. B. C. D. 12. 设随机变量X服从参数为0.2的指数分布,则下列各项中正确的是( A ) A. B. C. D. 13. 设为二维连续型随机变量,则X与Y不相关的充分必要条件是( D ). A. X与Y相互独立 B. C. D. 二、填空题1. 已知P(A)=0.6,P(A-B)=0.3,且A与B独立,则P(

12、B)= 0.5 .2. 设是两个事件,当A, B互不相容时,P(B)=_0.3_;当A, B相互独立时,P(B)= .3. 设在试验中事件A发生的概率为p,现进行n次重复独立试验,那么事件A至少发生一次的概率为.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P= .5. 随机变量X的分布函数F(x)是事件 P(X 的概率.6. 若随机变量X ,则X的密度函数为 .7.设随机变量X服从参数的指数分布,则X的密度函数 ; 分布函数F(x)= .8. 已知随机变量X只能取-1,0,1,三个值,其相应的概率依次为,则c= 2 (归一性) .9. 设随机变量X的概率密度

13、函数为,则 3 (归一性) .10. 设随机变量X,且,则=0.2 .11. 设随机变量XN(1,4),(0.5)=0.6915,(1.5)=0.9332,则P|X|2= 0.3753 .12. 设随机变量X ,Y ,且X与Y相互独立,则X+Y 分布.13. 设随机变量X的数学期望和方差都存在,令,则;.14. 若X服从区间0,2上的均匀分布,则4/3 .15. 若X,则= 9 .17. 设随机变量X的概率密度,,.18. 设随机变量X与Y相互独立,则=21 .三、计算题1. 设随机变量X与Y独立,且,求随机变量函数的数学期望与方差.四、证明题1. 设随机变量X服从标准正态分布,即X,证明:Y的密度函数为 .五、综合题1.设二维随机变量(X,Y)的联合密度为 , 求:(1)关于X,Y的边缘密度函数;(2)判断X,Y是否独立;(3)求.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服