收藏 分销(赏)

《应用数理统计》吴翊李永乐第三章-假设检验课后作业参考答案.doc

上传人:a199****6536 文档编号:3104401 上传时间:2024-06-18 格式:DOC 页数:22 大小:1.20MB
下载 相关 举报
《应用数理统计》吴翊李永乐第三章-假设检验课后作业参考答案.doc_第1页
第1页 / 共22页
《应用数理统计》吴翊李永乐第三章-假设检验课后作业参考答案.doc_第2页
第2页 / 共22页
《应用数理统计》吴翊李永乐第三章-假设检验课后作业参考答案.doc_第3页
第3页 / 共22页
《应用数理统计》吴翊李永乐第三章-假设检验课后作业参考答案.doc_第4页
第4页 / 共22页
《应用数理统计》吴翊李永乐第三章-假设检验课后作业参考答案.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64,今测得采用新工艺生产36个元件的平均电阻值为2.61。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为0.06,问新工艺对产品的电阻值是否有显著影响?()解:(1)提出假设(2)构造统计量(3)否定域(4)给定显著性水平时,临界值(5) ,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。已知这种元件寿命服从标准差的正态分布,试在显著水平

2、0.05下确定这批元件是否合格。 解:3.3某厂生产的某种钢索的断裂强度服从正态分布,其中。现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为,与以往正常生产时的相比,较大20()。设总体方差不变,问在下能否认为这批钢索质量显著提高?解:(1)提出假设(2)构造统计量(3)否定域(4)给定显著性水平时,临界值(5) ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在下能否接受假设,这批矿砂的镍含量为3.25?解: 3.5确定某种溶液中的水分,它的10个测

3、定值 试在水平5%检验假设:3.6 使用A(电学法)与B(混合法)两种方法来研究冰的潜热,样品都是的冰块,下列数据是每克冰从变成水的过程中吸收的热量(卡/克);方法A:79.98,80.04,80.02,80.04,80.03,80.03,80.04 79.97,80.05,80.03,80.02,80.00,80.02方法B:80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假设每种方法测得的数据都服从正态分布,且他们的方差相等。检验两种方法的总体均值相等。()解:(1)提出假设(2)构造统计量(3)否定域(4)给定显著性水平时,临界值(5) ,样

4、本点在否定域内,故拒绝原假设,认为两种方法的总体均值不相等。3.7 今有两台机床加工同一种零件,分别取6个及9个零件侧其口径,数据记为及,计算得假设零件的口径服从正态分布,给定显著性水平,问是否可认为这两台机床加工零件口径的方法无显著性差异?解:(1)提出假设(2)构造统计量(3)否定域(4)给定显著性水平时,临界值(5) ,样本点在否定域之外,故接受原假设,认为两台机床加工零件口径的方差无显著性影响。3.8用重量法和比色法两种方法测定平炉炉渣中的含量,得如下结果重量法:n=5次测量,比色法:n=5次测量,假设两种分析法结果都服从正态分布,问(i)两种分析方法的精度是否相同?(ii)两种分析方

5、法的是否相同?解:(i)(ii)3.9设总体 解:3.10 一骰子投掷了120次,得到下列结果:点数123456出现次数232621201515问这个骰子是否均匀? 解: 3.11 某电话站在一小时内接到电话用户的呼唤次数按每分钟记录的如下表:呼吸次数0123456=7频数81617106210试问这个分布能看作为泊松分布吗?解:3.12 检查产品质量时,每次抽取10个来检查,共抽取100次,记录每10个产品中的次品数如下表:次品数0 12345610频数35401851100试问生产过程中出现次品的概率能否看作是不变的,即次品数X是否服从二项分布?()解:提出假设:参数的极大似然估计为: ,

6、故在置性水平下接受,认为次品数服从二项分布。3.13从一批滚珠中随机抽取了50个,测得他们的直径为(单位:mm):15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14

7、.2是否可认为这批滚珠直径服从正态分布?解:表3-13 i1(0,14.6)60.13216.60610.0556214.6,14.8)50.12606.29760.2674314.8,15.1)130.262413.12090.0011415.1,15.4)140.253512.67520.1385515.4,)120.226011.30030.04330.50593.14 调查339名50岁以上吸烟习惯于患慢性支气管炎病的关系,得下表:吸烟不吸烟患慢性支气管炎431356未患慢性支气管炎162121283205134339患病率219.716.5试问吸烟者与不吸烟者的慢性支气管炎患病率是否

8、有所不同?()解:吸烟者与不吸烟者的慢性支气管炎患病率相同吸烟者与不吸烟者的慢性支气管炎患病率不同对每个对象考察两个指标,X是否吸烟,Y是否患病X的取值:吸烟,不吸烟;Y的取值:患病,不患病要研究吸烟与患慢性支气管炎病是否有关,这是一个r=s=2的二元列联表对于,查表,所以拒绝,认为吸烟者的慢性支气管炎病患病率较高。3.15下列为某种药治疗感冒效果的3*3列联表。 年龄疗效 儿童 成年 老年显著一般较差 58 38 32 28 44 45 23 18 14 1281175510910091300试问疗效与年龄是否有关?解:3.16自动机床加工轴,从成品中抽取11根,并测得它们直径(单位:mm)

9、如下:10.52 10.41 10.32 10.18 10.64 10.7710.82 10.67 10.59 10.38 10.49试检验这批零件的直径是否服从正态分布?解: 为了便于计算,列表如下:这里n=11。表3-16k110.1810.820.640.5601210.3210.770.450.3315310.3810.670.290.2260410.4110.640.230.1429510.4910.590.10.0695610.5210.5203.17 用D检验法检验例3.20。解:维尼纶纤度服从正态分布维尼纶纤度不服从正态分布为了便于计算,统计量D的分子可以换成与其相等的形式:定

10、义统计量:对于给定的显著性水平,查表得,由于,故接受,认为维尼纶纤度服从正态分布3.18用两种材料的灯丝制造灯泡,今分别随机抽取若干个进行寿命试验,其结果如下:甲(小时):1610 1650 1680 1700 1750 1720 1800乙(小时):1580 1600 1640 1640 1700试用秩和检验法检验两种材料制成的灯泡的使用寿命有无显著差异?解:将两组数据按从小到大的次序混合排列如下表所示,其中第一组的数据下边标有横线。表3-18序号123456789101112数据158016001610 1640 1640 1650168017001700 1720 17501800这里1

11、700两组都有,排在第8,第9位置上,它的秩取平均数(8+9)/2=8.5 这里,3.21对20台电子设备进行3000小时寿命试验,共发生12次故障,故障时间为340 430 560 920 1380 15201660 1770 2100 2320 2350 1650试问在显著水平下,故障事件是否服从指数分布?解:34010.213400.08330.2134 0.13000.213443010.26180.08330.16670.17850.09510.178556010.32650.16670.25000.15990.07650.159992010.47760.25000.33330.22

12、760.14430.2276138010.62250.33330.41670.28910.20580.2891152010.65800.41670.50000.24130.15800.2413166010.69020.50000.58330.19020.10680.1902177010.71330.58330.66670.13000.0467 0.1300210010.77290.66670.75000.1062 0.02290.1062232010.80560.75000.83330.05560.02780.0556235010.80960.83330.91670.02370.10700.1

13、070265010.84700.91671.00000.22870.31200.3120 2.21083.19 由10台电机组成的机组进行工作,在2000小时中有5台发生故障,其故障发生的时间为:1350 965 427 1753 665试问这些电机在2000小时前发生的故障时间T是否服从平均寿命为1500小时的指数分布?()解:故障时间服从指数分布故障时间不服从指数分布求未知参数的极大似然估计值为计算点的分布函数值,再计算,计算过程见下表:42710.33900.20.3390.1390.33966510.4750.20.40.2750.0750.27596510.6070.40.60.20

14、70.0070.207135010.7300.60.80.1300.0700.130175010.8170.81.00.0170.1830.183合计1.134由表知,在给定的置性水平下,查表得,故接受,认为服从平均寿命为1500小时的指数分布3.20 考察某台仪器的无故障工作时间12次,的数据如下:28 42 54 92 138 159 169 181 210 234 236 265试问无故障工作时间是否服从指数分布?()解:无故障工作时间服从指数分布无故障工作时间不服从指数分布求未知参数的极大似然估计值为:计算点的分布函数值,再计算,计算过程见下表:2810.17000.0830.1700

15、.0870.1704210.2430.0830.1670.1600.0760.1605410.3010.1670.250.1340.0510.1349210.4570.250.3330.2070.1240.20713810.6000.3330.41702.670.1830.26715910.6520.4170.50.2350.1520.23516910.6740.50.5830.1740.0910.17418110.6990.5830.6670.1160.0320.11621010.7520.6670.750.0850.0020.08523410.7880.750.8330.0380.0450

16、.04523610.7910.8330.9170.0420.1260.12626510.8280.9171.0000.0890.1720.172合计1.891由表知,在给定的置性水平下,查表得,故拒绝,认为无故障工作时间不服从指数分布3.21 对20台电子设备进行3000小时的寿命试验,共发生2次故障,故障时间为:340 430 560 920 1380 1520 1660 1770 2100 2320 2350 2650 试问在显著性水平下,故障时间是否服从指数分布?解:故障时间服从指数分布故障时间不服从指数分布求未知参数的极大似然估计值:计算点的分布函数值,再计算,计算过程见下表:3401

17、0.202800.08330.20280.11950.202843010.24920.08330.16670.16590.08250.165956010.31150.16670.250.14480.06150.144892010.45840.250.33330.20840.12510.2084138010.60150.33330.41670.28170.18480.2817152010.63950.41670.50.22020.13690.2202166010.66950.50.58330.16950.08620.1695177010.69270.58330.66670.10940.0260.

18、1094210010.75340.66670.750.08670.00340.0867232010.78710.750.83330.03710.04620.4062235010.79120.83330.91670.04210.12550.1255265010.82910.91671.00000.087 50.17080.1708合计1.9319,故在下,拒绝,认为故障时间不服从指数分布。3.22 甲乙两位工人在同一台机床上加工相同规格的主轴,从两人加工的主轴中分别随机的抽取7个,然后测量它们的外径(单位:mm),的数据如下:甲20.519.819.720.420.120.019.0乙19.72

19、0.820.519.819.420.619.2试用柯尔莫哥洛夫检验法和秩和检验法分别检验这两位工人加工的主轴外径是否服从相同的分布?()解:(1)柯尔莫哥洛夫检验法两位工人加工的主轴外径服从相同的分布两位工人加工的主轴外径不服从相同的分布求未知参数的极大似然估计值:计算过程见下表:19.01-1.7490.0400.0710.0400.0310.0419.21-1.3840.0840.0710.1430.0130.0590.05919.41-1.0200.1540.1430.2140.0110.060.0619.72-0.4740.3190.2140.3570.1050.0380.10519.

20、82-0.2910.3860.3570.50.0290.1140.11420.010.0730.52790.50.5710.02790.04310.043120.110.2550.60260.5710.6430.03160.04040.040420.410.8010.78810.6430.7140.14510.07410.145120.520.98360.83650.7140.8570.12250.02050.122520.611.16580.87900.8570.9290.0220.050.0520.811.5300.936990.9291.000.007990.063010.063,故在下

21、,接受,两位工人加工的主轴外径服从相同的分布。(2)秩和检验法将两组数据按从小到大的顺序排列,划横线为甲的数据序号1234567数据19.019.219.419.719.719.819.8序号891011121314数据20.020.120.420.520.520.620.8当时,对于给定的置信水平,故接受原假设,认为两位工人加工的主轴外径服从相同的分布。3.23 在D统计量中,证明:证明:(1)当n=2m时令2m+1-k=p,则k=2m+1-p,有(2)当n=2m+1时,令2m+2-k=p,则k=2m+2-p,有 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服