资源描述
《机械优化设计》复习题及答案
一、填空题
1、用最速下降法求f(X)=100(x2- x12) 2+(1- x1) 2的最优解时,设X(0)=[-0.5,0.5]T,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来拟定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n个设计变量的优化问题,称为 n 维优化问题。
6、函数 的梯度为 HX+B 。
7、设G为n×n对称正定矩阵,若n维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目的函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数,若在点处取得极小值,其必要条件是 梯度为零 ,充足条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目的函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数的极小点,初始搜索区间,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目的函数 、
13、牛顿法的搜索方向dk= ,其计算量 大 ,且规定初始点在极小点 逼近 位置。
14、将函数f(X)=x12+x22-x1x2-10x1-4x2+60表达成的形式 。
15、存在矩阵H,向量 d1,向量 d2,当满足 (d1)TGd2=0 ,向量 d1和向量 d2是关于H共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的处罚因子r数列,具有 由小到大趋于无穷 特点。
17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求 。
二、选择题
1、下面 方法需规定海赛矩阵。
A、最速下降法
B、共轭梯度法
C、牛顿型法
D、DFP法
2、对于约束问题
根据目的函数等值线和约束曲线,判断为 ,为 。
A.内点;内点
B. 外点;外点
C. 内点;外点
D. 外点;内点
3、内点处罚函数法可用于求解__________优化问题。
A 无约束优化问题
B只具有不等式约束的优化问题
C 只具有等式的优化问题
D 具有不等式和等式约束的优化问题
4、对于一维搜索,搜索区间为[a,b],中间插入两个点a1、b1,a1<b1,计算出f(a1)<f(b1),则缩短后的搜索区间为___________。
A [a1,b1]
B [ b1,b]
C [a1,b]
D [a,b1]
5、_________不是优化设计问题数学模型的基本要素。
A设计变量
B约束条件
C目的函数
D 最佳步长
6、变尺度法的迭代公式为xk+1=xk-αkHk▽f(xk),下列不属于Hk必须满足的条件的是________。
A. Hk之间有简朴的迭代形式
B.拟牛顿条件
C.与海塞矩阵正交
D.对称正定
7、函数在某点的梯度方向为函数在该点的 。
A、最速上升方向
B、上升方向
C、最速下降方向
D、下降方向
8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目的函数的一阶或二阶导数。
A 梯度法
B 牛顿法
C 变尺度法
D 坐标轮换法
9、设为定义在凸集R上且具有连续二阶导数的函数,则在R上为凸函数的充足必要条件是海塞矩阵G(X)在R上处处 。
A 正定
B 半正定
C 负定
D 半负定
10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是 ,假设规定在区间[a,b]插入两点α1、α2,且α1<α2。
A、其缩短率为0.618
B、α1=b-λ(b-a)
C、α1=a+λ(b-a)
D、在该方法中缩短搜索区间采用的是外推法。
11、与梯度成锐角的方向为函数值 上升 方向,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。
A、上升
B、下降
C、不变
D、为零
12、二维目的函数的无约束极小点就是 。
A、等值线族的一个共同中心
B、梯度为0的点
C、全局最优解
D、海塞矩阵正定的点
13、最速下降法相邻两搜索方向dk和dk+1必为 向量。
A 相切
B 正交
C 成锐角
D 共轭
14、下列关于内点处罚函数法的叙述,错误的是 。
A 可用来求解含不等式约束和等式约束的最优化问题。
B 处罚因子是不断递减的正值
C初始点应选择一个离约束边界较远的点。
D 初始点必须在可行域内
15、通常情况下,下面四种算法中收敛速度最慢的是
A 牛顿法 B 梯度法 C 共轭梯度法 D 变尺度法
16、一维搜索试探方法——黄金分割法比二次插值法的收敛速度
A、慢 B、快 C、同样 D、不拟定
17、下列关于共轭梯度法的叙述,错误的是 。 A 需规定海赛矩阵
B 除第一步以外的其余各步的搜索方向是将负梯度偏转一个角度 C 共轭梯度法具有二次收敛性
D 第一步迭代的搜索方向为初始点的负梯度
三、问答题
1、试述两种一维搜索方法的原理,它们之间有何区
答:搜索的原理是:区间消去法原理
区别:(1)、试探法:给定的规定来拟定插入点的位置,此点的位置拟定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法
(2)、插值法:没有函数表达式,可以根据这些点处的函数值,运用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为本来函数的近似值。这种方法称为插值法,又叫函数逼近法。
2、处罚函数法求解约束优化问题的基本原理是什么?
答,基本原理是将优化问题的不等式和等式约束函数通过加权转化后,和原目的函数结合形成新的目的函数——处罚函数å求解该新目的函数的无约束极值,以期得到原问题的约束最优解
3、试述数值解法求最佳步长因子的基本思绪。
答 重要用数值解法,运用计算机通过反复迭代计算求得最 佳步长因子的近似值
4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺陷。
答:最速下降法此法优点是直接、简朴,头几步下降速度快。缺陷是收敛速度慢,越到后面收敛越慢。牛顿法优点是收敛比较快,对二次函数具有二次收敛性。缺陷是每次迭代需规定海塞矩阵及其逆矩阵,维数高时及数量比较大。
5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。
四、解答题
1、试用梯度法求目的函数f(X)=1.5x12+0.5x22- x1x2-2x1的最优解,设初始点x(0)=[-2,4]T,选代精度ε=0.02(迭代一步)。
2、试用牛顿法求f( X )=(x1-2)2+(x1-2x2)2的最优解,设初始点x(0)=[2,1]T。
3、设有函数 f(X)=x12+2x22-2x1x2-4x1,试运用极值条件求其极值点和极值。
4、求目的函数f( X )=x12+x1x2+2x22 +4x1+6x2+10的极值和极值点。
5、试证明函数 f( X )=2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点[1,1,-2]T处具有极小值。
6、给定约束优化问题
min f(X)=(x1-3)2+(x2-2)2
s.t. g1(X)=-x12-x22+5≥0
g2(X)=-x1-2x2+4≥0
g3(X)= x1≥0
g4(X)=x2≥0
验证在点Kuhn-Tucker条件成立。
7、设非线性规划问题
用K-T条件验证为其约束最优点。
10、如图,有一块边长为6m的正方形铝板,四角截去相等的边长为x的方块并折转,造一个无盖的箱子,问如何截法(x取何值)才干获得最大容器的箱子。试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。
11、某厂生产一个容积为8000cm3的平底无盖的圆柱形容器,规定设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。
12、一根长l的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以如何的比例截断铅丝,才干使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
13、求表面积为300m2的体积最大的圆柱体体积。试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大。写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解(写出M文献和求解命令)。
判断题
1,二元函数等值线密集的区域函数值变化慢 x
2海塞矩阵正定的充要条件是它的各阶主子式大于零 x
3; 当迭代点接近极小点时,步长变得很小, 越走越慢 v
4二元函数等值线疏密限度变化
5 变尺度法不需海塞矩阵v
6梯度法两次的梯度互相垂直v
展开阅读全文