收藏 分销(赏)

物理选修35碰撞与动量守恒知识点与习题.doc

上传人:精**** 文档编号:3049503 上传时间:2024-06-14 格式:DOC 页数:6 大小:182KB 下载积分:6 金币
下载 相关 举报
物理选修35碰撞与动量守恒知识点与习题.doc_第1页
第1页 / 共6页
物理选修35碰撞与动量守恒知识点与习题.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
碰撞与动量守恒 一、动量和冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 图1 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少? 二.动量定理 1.求动量及动量变化的方法。 【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少? 【例2】 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向和大小为( D) A.向下,m(v2 - v1)B.向下,m(v2 + v1)C.向上,m(v2 - v1)D.向上,m(v2 + v1) 2.质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2.用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经 过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2).求解平均力问题 【例4】质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为1.2s,安全带伸直后长5m,求安全带所受的平均冲量.( g= 10m/s2) (3)、求解曲线运动问题 【例5】以Vo =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小. (4)、求解流体问题 【例6】某种气体分子束由质量m=5.4X10-26kg速度V=460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有n0=1.5X1020个分子,求被分子束撞击的平面所受到的压强. (5)、对系统应用动量定理。 系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。若将系统受到的每一个外力、系统内每一个物体的速度均沿正交坐标系x轴和y轴分解,则系统的动量定理的数学表达式如下: , 【例7】如图所示, 质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为V0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大? 【例8】如图所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。现瞬间使物体A获取一向右且与矩形盒B左、右侧壁垂直的水平速度V0,以后物体A在盒B的左右壁碰撞时,B始终向右运动。当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离S后也停止运动,求盒B运动的时间t。 三.动量守恒定律 (1).动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即: (2)动量守恒定律成立的条件 系统不受外力或者所受外力之和为零; 系统受外力,但外力远小于内力,可以忽略不计; 系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 (3).动量守恒定律的表达形式:除了,即p1+p2=p1/+p2/外,还有:Δp1+Δp2=0,Δp1= -Δp2 和 1.根据动量守恒条件判定系统的动量是否守恒? 【例1】如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中: A、动量守恒、机械能守恒 B、动量不守恒、机械能不守恒 C、动量守恒、机械能不守恒 D、动量不守恒、机械能守恒 【例2】质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说法是可能发生的( ) A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3,且满足:(M+M0)V0=MV1+M1V2+M0V3; B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:MV0=MV1+M1V2; C.摆球的速度不变,小车和木块的速度都为V,且满足:MV0=(M+M1)V; D.小车和摆球的速度都变为V1,木块的速度变为V2,且满足:(M+M0)V0=(M+M0)V1+M1V2 2.分方向动量守恒 【例3】 如图所示。质量为m的铅球以大小为v0 仰角为θ的初速度抛入一个装着砂子的总质量为M的静止的砂车中,砂车与地面的摩擦不计,球与砂车的共同速度是多少? 2.如图所示,木块A静置于光滑的水平面上,其曲面部分MN光滑,水平部分 NP是粗糙的,现有一物体B自M点由静止下滑,设NP足够长,则以下叙述正确的是( ) A.A、B最终以同一速度(不为零)运动 B.A、B最终速度均为零 C.A物体冼做加速运动,后做减速运动 D.A物体先做加速运动,后做匀速运动 3.如图所示,将一质量为lkg的物体在距离地面高5m处由静止自由下落,正好落在以5m/s速度沿光滑水平面做匀速运动的装有砂子的小车中,车与砂子的总质量为4kg,当物体与小车相对静止后,小车的速度为() A.3m/s B.4m/s C.5m/s D.6m/s 3.根据动量守恒定律求解“合二为一”和“一分为二”问题。 【例4】甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球? 【例5】人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再接到木箱?(已知) 4.动量守恒定律解“人船模型”问题 【例6】载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长? 【例7】如图7所示,质量为M的车静止在光滑水平面上,车右侧内壁固定有发射装置。车左侧内壁固定有沙袋。发射器口到沙袋的距离为d,把质量为m的弹丸最终射入沙袋中,这一过程中车移动的距离是_______。 【例8】质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大? 5.分析求解“三体二次作用过程”问题 【例9】光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图所示。B与C碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J时,物块A的速度是 m/s。 【例10】如图所示为三块质量均为m,长度均为L的木块。木块1和木块2重叠放置在光滑的水平桌面上,木块3沿光滑水平桌面运动并与叠放在下面的木块2发生碰撞后粘合在一起,如果要求碰后原来叠放在上面的木块1完全移到木块3上,并且不会从木块3上掉下,木块3碰撞前的动能应满足什么条件?设木块之间的动摩擦因数为m。 6.分析求解“二体三次作用过程”问题 【例11】如图所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少? 【例12】如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。最初木板静止,A、B两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。求: (1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移; (2)木块A在整个过程中的最小速度。 7.用动量守恒定律解“碰撞类”问题 【例13】甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P1=5kg.m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种? A、m1=m2 B、2m1=m2 C、4m1=m2 D、6m1=m2。 【例14】如图所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况? A.甲球速度为零,乙球速度不为零B.两球速度都不为零 C.乙球速度为零,甲球速度不为零D.两球都以各自原来的速率反向运动 8.用动量守恒定律和能量守恒解“相对滑动类”问题 【例15】如图所示,一质量为M、长为L的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系,给A和B以大小相等、方向相反的初速度(如图1),使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板,以地面为参照系. (1)若已知A和B的初速度大小为V0,求它们最后的速度大小和方向. V0 V0 B A (2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离. 9.连续发生作用的问题。 1.如图所示,一排人站在沿z轴的水平轨道旁,原点O两侧的人的序号都记为n(n=1,2,3…)。每人只有一个砂袋,x>O一侧的每人砂袋质量为m=14kg,x<O一侧的每人砂袋质量为m/=lOkg。一质量为M=48kg的小车以某初速度从原点出发向x轴正方向滑行,不计轨道阻力。当车每经过一人身旁时,此人就把砂袋以水平速度u朝与车速相反的方向沿车面扔到车上,u的大小等于扔此袋之前的瞬间车速大小的2n倍(n是此人的序号数)。求: (1)空车出发后,车上堆积了几个砂袋时车就反向滑行? (2)车上最终有大小砂袋共多少个? 2.列车进入编组站后要分解重组,会出现列车挂接问题,将许多节车厢逐一组合起来的过程实质是一个完全非弹性碰撞过程(即碰后车速相同),设一列火车共有n节车厢,各车厢之间间隙相等,间隙长度的总和为s,第一节车厢以速度”向第二节车厢运动,碰撞后通过“詹天佑挂钩”连接在一起,直到n节全部挂好,则火车的最后速度是多大?整个路程经历的时间是多少? 3.小车静置在光滑水平面上,站在车上的人练习打靶,人站在车的一端,靶固在车的 另一端,如图所示,已知车、人、靶和枪的总质量为M(不包括子弹),每颗子弹质量为m,共n发,每颗子弹击中靶后,就留在靶内,且待前一发击中靶后,再打下一发,打完n发后,小车移动的距离为多少? 4.如图9所示,质量为m的木块(可视为质点)放在质量为M的有限长度的木板中央,木块与木板间的动摩擦因数为μ,开始时木块与木板一起在光滑的水平面上以速度v0向右运动,为使木板和木块都停下来且木块又不滑出木板,可采用对木块瞬时施加一水平冲量的方法。 (1)为了达到题中所述目的,应对题中哪些未知条件予以定量约束,并导出定量结果。 (2)若外力对木块施加冲量瞬间对木块做功为零,则题中木板质量M和木块质量m之间应存在什么关系? 5.如图所示,光滑水平面上静止放着长L=2.0m质量M=3.0kg的木板,一个质量m=1.0kg的小物体(可视为质点)放在离木板右端a=0.4m处,m和M之间的动摩擦因数μ=0.1.今对木板施加向右的拉力F=10.0N,为使木板自物体下方分离出来,此拉力作用时间不得少于多长?
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中物理

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服