收藏 分销(赏)

基于ProE的便携式手机充电器上盖注塑模设计毕业设计论文.doc

上传人:可**** 文档编号:3040750 上传时间:2024-06-13 格式:DOC 页数:28 大小:4.11MB
下载 相关 举报
基于ProE的便携式手机充电器上盖注塑模设计毕业设计论文.doc_第1页
第1页 / 共28页
基于ProE的便携式手机充电器上盖注塑模设计毕业设计论文.doc_第2页
第2页 / 共28页
基于ProE的便携式手机充电器上盖注塑模设计毕业设计论文.doc_第3页
第3页 / 共28页
基于ProE的便携式手机充电器上盖注塑模设计毕业设计论文.doc_第4页
第4页 / 共28页
基于ProE的便携式手机充电器上盖注塑模设计毕业设计论文.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、编号无锡太湖学院毕业设计(论文)相关资料题目:基于Pro/E的便携式手机充电器 上盖注塑模设计 信机 系 机械工程及其自动化 专业学 号: 0923225 学生姓名: 指导教师: (职称:讲 师) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目:基于Pro/E的便携式手机充电器 上盖注塑模设计 信机 系 机械工程及自动化 专业学 号: 0923225 学生姓名: 指导教师: (职称:讲师 ) (职称: )2012年11月25日课题来

2、源本课题来源于生活生产实际。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义 随着现代制造技术的迅速发展、计算机技术的应用,在玩具产业中模具已经成为生产各种玩具不可缺少的重要工艺装备。特别是在塑料产品的生产过程中,塑料模具的应用及其广泛,在各类模具中的地位也越来越突出,成为各类模具设计、制造与研究中最具有代表意义的模具之一。而注塑模具已经成为制造塑料制造品的主要手段之一,且发展成为最有前景的模具之一。注射成型是当今市场上最常用、最具前景的塑料成型方法之一,因此注塑模具作为塑料模的一种,就具有很大的市场需求量。所以我选充电器注塑模具设计作为我毕业设计的

3、课题。 本课题应用性强,涉及的知识面与知识点较多,如注塑成型、模具设计、三维造型、运动仿真以及二维三维软件的应用。(2) 研究状况及其发展前景 近年来我国的模具技术有了很大的发展,在大型模具方面,已能生产大屏彩电注塑模具、大容量洗衣机全套塑料模具以及汽车保险杠和整体仪表板等塑料模具。机密塑料模具方面,已能生产照相机塑料件模具、多型腔小模数齿轮模具及塑封模具。 在成型工艺方面,多材质塑料成行模、高效多色注塑模、镶件互换结构和抽芯脱模机构的创新业取得了较大进展。气体辅助注射成形技术的使用更趋成熟。热流道模具开始推广,有些单位还采用具有世界先进水平的高难度针阀式热流道模具。 在制造方面,CAD/CA

4、M/CAE技术的应用上了一个新台阶,一些企业引进CAD/CAM系统,并能支持CAE技术对成形过程进行分析。近年来我国自主开发的塑料膜CAD/CAM系统有了很大发展,如北航华正软件工程研究所开发的CAXA系统、华中理工大学开发的注塑模HSC5.0系统及CAE软件等。优化模具系统结构设计和型件的CAD/CAE/CAM,并使之趋于智能化,提高型件成形加工工艺和模具标准化水平,提高模具制造精度与质量,降低型件表面研磨、抛光作业量和缩短制造周期;研究、应用针对各类模具型件所采用的高性能、易切削的专用材料,以提高模具使用性能;为适应市场多样化和个性化,应用快速原型制造技术和快速制模技术,以快速制造成塑料注

5、塑模,缩短新产品试制周期。这些是未来520年注塑模具生产技术的总体发展趋势,具体表现在以下几个方面:1.提高大型、精密、复杂、长寿命模具的设计水平及比例。这是由于塑料模成型的制品日渐大型化、复杂化和高精度要求以及因高生产率要求而发展的一模多腔所致。 2.在塑料模设计制造中全面推广应用CAD/CAM/CAE技术。CAD/CAM软件的智能化程度将逐步提高;塑料制件及模具的3D设计与成型过程的3D分析将在我国塑料模具工业中发挥越来越重要的作用。 3.推广应用热流道技术、气辅注射成型技术和高压注射成型技术。采用热流道技术的模具可提高制件的生产率和质量,并能大幅度节省塑料制件的原材料和节约能源,所以广泛

6、应用这项技术是塑料模具的一大变革。制订热流道元器件的国家标准,积极生产价廉高质量的元器件,是发展热流道模具的关键。气体辅助注射成型可在保证产品质量的前提下,大幅度降低成本。气体辅助注射成型比传统的普通注射工艺有更多的工艺参数需要确定和控制,而且常用于较复杂的大型制品,模具设计和控制的难度较大,因此,开发气体辅助成型流动分析软件,显得十分重要。另一方面为了确保塑料件精度,继续研究开发高压注射成型工艺与模具也非常重要。 4.开发新的成型工艺和快速经济模具。以适应多品种、少批量的生产方式。 5.提高塑料模标准化水平和标准件的使用率。我国模具标准件水平和模具标准化程度仍较低,与国外差距甚大,在一定程度

7、上制约着我国模具工业的发展,为提高模具质量和降低模具制造成本,模具标准件的应用要大力推广。为此,首先要制订统一的国家标准,并严格按标准生产;其次要逐步形成规模生产,提高商品化程度、提高标准件质量、降低成本;再次是要进一步增加标准件的规格品种。 6.应用优质材料和先进的表面处理技术对于提高模具寿命和质量显得十分必要。 研究内容本课题主要是针对显示器后盖的模具设计,通过对塑件进行工艺的分析和比较,最终设计出一副注塑模。该课题从产品结构工艺性,具体模具结构出发,通过查阅相关资料,对塑件的材料进行分析和选用,并且对塑件的结构,成型工艺进行分析和确定。模具的设计需要对的浇注系统、模具成型部分的结构、顶出

8、系统、冷却系统、注塑机的选择及有关参数的校核、都有详细的设计,同时并简单的编制了模具的加工工艺。其中模具的成型部分的设计包括分型面的设计,浇注系统的设计,成型零件的工作尺寸和外形尺寸的设计模架的设计包括模架的组成,相关零部件的尺寸设计,各零部件的用途,以及模拟模架的开模,合模。最后还要有对成型零件,模架的安装尺寸,合模力,顶出力,开模行程的校核,确保所设计的模具符合要求。拟采取的研究方法、技术路线、实验方案及可行性分析研究方法:通过阅读有关资料,文献,收集筛选,整理课题研究所需的有关数据,理论依据,综合运用所学理论知识研究论文课题。方案设计:在工艺分析的基础上,综合考虑产品的产量和精度要求。所

9、用材料的性能,设备情况及模具制造情况,确定该工件的工艺规程和每道工序的注塑模结构形式。结构设计:在方案设计的基础上,进一步设计模具各部分零件的具体结构尺寸。1注塑的工艺分析:分析塑件的结构形状,尺寸精度,材料是否符合,注塑工艺要求,从而确定注塑的可能性。2确定注塑模工艺方案及模具结构形式:工序数目,工序性质,工序顺序,工序组合及模具结构形式。3注塑模具的设计计算。注塑压力、注射的塑件的体积,所需原来的体积,成型时间确定,确定各主要零件的外形尺寸,计算模具的闭合高度,确定所用注塑机。4 绘制注塑模总装图5通过对论文课题的学习研究,达到巩固,扩大,深化已学理论知识,提高思考分析解决实际问题等综合素

10、质的目的。研究计划及预期成果研究计划:实习调研、开题准备、工艺设计和拟定、模具结构设计、编写设计说明书。2012年11月12日-2012年12月12日:查阅论文相关参考资料,填写开题报告书。2012年12月30日-2013年1月20日:填写毕业实习报告。2013年3月11日-2013年3月15日:学习模具设计以及相关知识,考虑设计。2013年3月16日-2013年3月17日:翻译一篇相关的英文材料,规划整体方案。2013年3月18日-2013年4月26日:明确塑件设计要求及批量,计算塑件的体积和质量,注塑机的确定;模具成型零件的工作尺寸有关计算;图表配图设计及相关计算。2013年4月22日-2

11、013年4月26日:Pro/E、CAD绘图。2013年5月6日-2013年5月24日:毕业论文撰写和修改工作。预期成果:本课题旨在通过对显示器外壳产品的模具设计,系统的了解塑料及塑料的成型基本理论,能够正确分析成型工艺对模具的要求。掌握塑件的成型工艺分析方法,能根据塑件的正确使用和工艺要求进行一般的塑件产品设计。掌握各类塑料模具结构特点,零部件设计与计算,具备独立中等复杂的注射模具的能力。了解塑料模具材料的选用和新技术发展等其他知识。培养分析问题以及运用所学知识解决实际工程问题的综合能力。特色或创新之处手机充电器是我们日常生活中不可缺少的电器,各个厂商生产的便携式手机充电器都不一样,但是现在越

12、来越多的消费者注重了便携式手机充电器的外观、实用性等等。有着新颖外观切使用的显示器是非常受广大消费者的喜爱,所以各个生产厂商努力设计生产出各种新颖时尚切安全使用的便携式手机充电器吸引消费者的眼球。已具备的条件和尚需解决的问题已具备的条件:已具备的条件:已学过的塑料成型加工工艺、注塑模具的设计,并结合日常生活中所积累的相关知识,询问老师和有工作经验者,同时有部分可参考的同类设计资料及图纸。尚需解决的问题:缺乏实践经验,并需要老师在设计过程中加以指导尚需解决的问题:理论与实践有着不可避免的差距,由于没有设计经验,在实际设计时,会遇到许多问题。而且平时没把三维软件学好,设计绘图时耗费很大精力和时间。

13、自身设计能力需要实践经验进一步加强巩固。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa a YAYLAAbstract The plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular p

14、rocesses for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing. Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the

15、by applying a systematic mould design process. The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, follow

16、ed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in todays manuf acturing environment. Team working spirit, ma

17、nagement involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, productio

18、n scheduling and cost as early as possible in the design stage. This paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the

19、mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould. Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Mouldin

20、g conditions, Plastic injection moulding, Flow simulation 1. Introduction Injection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of d

21、esigning and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost,

22、 mould quality and cost of mould product are inseparableIn todays completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can

23、perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance. 2. Injection M

24、oulding Injection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing pr

25、ocess and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a huge number of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufac

26、turing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving f

27、rom CAD to CAM and further enhance the validity of the product development. 3. Importance of Computer Aided Injection Mould Design The injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to con

28、sider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. More

29、over, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months n

30、eeded for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market. Th

31、e need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer des

32、ign tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and siz

33、e to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and p

34、rediction of frozen stress and warpage. The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing

35、 and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is

36、obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage. Machining of the moulds was formerly done manually, with a toolmaker checking each cut. Thi

37、s process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high

38、as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated. It is good news that the time it

39、 takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive. Figure 1 CAE analysis of injection moulded parts Many company executives

40、now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not on

41、ly realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of

42、 competitive success. Figure 2 shows that only 37% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 1525%. For world-class firms, it is 6080% (Thompson, 1996). The best companies continuously de

43、velop new products. At Hewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997) Figure 2. Importance of new product (Jacobs, 2000) With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead tim

44、e in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a syste

45、matic methodology and knowledge base for injection mould design in a concurrent engineering environment. 4. Concurrent Engineering in Mould Design Concurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and shar

46、ing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the product life-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements: 1. process 2. multidisciplinary team 3. integrated design model 4. facility 5. software infrastructure Figure 3 Methodologies in plastic inj

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服