收藏 分销(赏)

2013因式分解难题经典题.doc

上传人:精*** 文档编号:3016691 上传时间:2024-06-13 格式:DOC 页数:8 大小:76KB
下载 相关 举报
2013因式分解难题经典题.doc_第1页
第1页 / 共8页
2013因式分解难题经典题.doc_第2页
第2页 / 共8页
2013因式分解难题经典题.doc_第3页
第3页 / 共8页
2013因式分解难题经典题.doc_第4页
第4页 / 共8页
2013因式分解难题经典题.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、1、若实数满足,则 2、已知,则的值为 3、分解因式: a3a2a1_.4、已知ab2,则a2b24b的值5、因式分解: 6、已知实数满足,则的平方根等于 7、若,则的值是_8、,则_。9、如果是一个完全平方式,则= .10、已知实数x 满足x+=3,则x2+的值为_.11、若a2+ma+36是一个完全平方式,则m=12、已知,则 .13、a4(a) ; 15、把下列各式分解因式: 18、如果,求的值19、已知a+b=5,ab=7,求a2b+ab2ab的值20、(x1)(x3)8 22、23、(1)已知am=2,an=3,求am+n的值; a3m2n的值(2)已知(a+b)2=17,(ab)2

2、=13,求a2+b2与ab的值24、先化简,再求值:已知:a2+b2+2a一4b+5=0求:3a2+4b-3的值。评卷人得分三、选择题(每空? 分,共? 分)25、若的值为( )A.0 B.-6 C.6 D.以上都不对26、下列各式中,能用平方差公式分解因式的是( )。A、x24y2 B、x22y1 C、x24y2 D、x24y2 27、不论为什么实数,代数式的值()A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数28、若9x2+mxy+16y2是一个完全平方式,则m的值为()A24B12C12D2429、下列各式中与2nmm2n2相等的是()A(mn)2B(mn)2C(m+n

3、)2D(m+n)230、.若+(m3)a+4是一个完全平方式,则m的值应是() A.1或5B.1C.7或1D.1 31、下列计算中,x(2x2x1)2x3x21;(ab)2a2b2;(x4)2x24x16;(5a1)(5a1)25a21;(ab)2a22abb2;其中正确的个数有( )A.1个 B.2个 C.3个 D.4个评卷人得分四、计算题(每空? 分,共? 分)32、因式分解:; 33、已知a+b=3,ab=2,试求(1)a2+b2;(2)(ab)2。一、填空题1、3 2、3, 3、(a1)2(a1)4、4 ; 5、; 6、; 7、2009 8、59、; 10、711、考点:完全平方式.分

4、析:由完全平方公式:(ab)2=a22ab+b2把所求式化成该形式就能求出m的值解答:解:a2+ma+36=(a6)2,解得m=12点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式此题解题的关键是利用平方项求乘积项12、1813、a 14、8二、简答题15、 16、17、18、解:原方程可化为, 19、考点:因式分解的应用.专题:计算题分析:所求式子前两项提取ab,后两项提取1变形后,将a+b与ab的值代入计算,即可求出值解答:解:a+b=5,ab=7,a2b+ab2ab=ab(a+b)(a+b)=57(5)=35+5=30点评:此题考查了因式分解

5、的应用,熟练掌握完全平方公式是解本题的关键20、原式=x24x+38=x24x5=(x5)(x+1) 21、=4分22、解: 23、考点:整式的混合运算.专题:计算题分析:(1)所求式子利用同底数幂的乘法法则变形,将各自的值代入计算即可求出值;所求式子利用幂的乘方与同底数幂的除法法则变形,将各自的值代入计算即可求出值;(2)已知两等式利用完全平方公式展开,相加、相减即可求出所求式子的值解答:解:(1)am=2,an=3,am+n=aman=23=6;a3m2n=(am)3(an)2=89=;(2)(a+b)2=a2+2ab+b2=17,(ab)2=a22ab+b2=13,+得:2(a2+b2)

6、=30,即a2+b2=15;得:4ab=4,即ab=1点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:积的乘方与幂的乘方,平方差公式,单项式乘单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键24、8 三、选择题25、B 解析: , 且, , ,故选B.26、C 27、A 解析: 因为,所以,所以28、考点:完全平方式.分析:这里首末两项是3x和4y这两个数的平方,那么中间一项为加上或减去3x和4y积的2倍,故m=24解答:解:由于(3x4)2=9x224x+16=9x2+mx+16,m=24故选D点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式要求掌握完全平方公式,并熟悉其特点29、考点:完全平方公式.分析:把原式化为完全平方式的形式即可得出结论解答:解:原式=(m2+n22mn)=(mn)2故选B点评:本题考查的是完全平方式,根据题意把原式化为完全平方式的形式是解答此题的关键30、C31、A 四、计算题32、因式分解:; 解原式= = 33、解:(1)由(a+b)2=a2+2ab+b2可知a2+b2=(a+b)22ab=94=5 (2)(ab)2=a2+b22ab=54=1

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服